Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-17 DOI:10.1016/j.jcis.2024.12.119
Jingwen Wang, Qing Zhang, Lin Yang, Chuangang Hu, Zhengyu Bai, Zhongwei Chen
{"title":"Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction.","authors":"Jingwen Wang, Qing Zhang, Lin Yang, Chuangang Hu, Zhengyu Bai, Zhongwei Chen","doi":"10.1016/j.jcis.2024.12.119","DOIUrl":null,"url":null,"abstract":"<p><p>Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds. This process significantly accelerates the proton-coupled electron transfer process and enhances the ORR reaction kinetics. As a result, the catalyst FeCrNC achieves a remarkable half-wave potential of 0.92 V and exhibits superior four-electron selectivity in 0.1 M KOH solution. Moreover, the zinc-air battery assembled by FeCrNC demonstrates a high power density of 207 mW cm<sup>-2</sup> and negligible degradation over 240 h at a current density of 10 mA cm<sup>-2</sup>.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"742-751"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds. This process significantly accelerates the proton-coupled electron transfer process and enhances the ORR reaction kinetics. As a result, the catalyst FeCrNC achieves a remarkable half-wave potential of 0.92 V and exhibits superior four-electron selectivity in 0.1 M KOH solution. Moreover, the zinc-air battery assembled by FeCrNC demonstrates a high power density of 207 mW cm-2 and negligible degradation over 240 h at a current density of 10 mA cm-2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔铁双金属原子位诱导界面氢键的高效氧还原反应。
在电催化氧还原反应(ORR)中,界面氢键是提高质子活性和加速质子耦合电子转移动力学的关键。在这里,我们提出了一种新型的fer双金属原子位催化剂,支撑在蜂窝状多孔碳层上,旨在通过诱导界面氢键来优化微环境,以实现高效的电催化ORR。表征,包括x射线吸收光谱和原位红外光谱,揭示了由于FeCr位点的形成而导致的离域电子的重排,这有利于界面水分子的解离和随后氢键的形成。该过程显著加快了质子耦合电子转移过程,提高了ORR反应动力学。结果表明,在0.1 M KOH溶液中,FeCrNC的半波电位达到了0.92 V,并表现出优异的四电子选择性。此外,由FeCrNC组装的锌-空气电池具有207 mW cm-2的高功率密度,在电流密度为10 mA cm-2的情况下,240 h的降解可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Chromic nitrate
阿拉丁
Ferrocenecarboxylic acid
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
3D cross-linked structure of dual-active site CoMoO4 nanosheets@graphite felt electrode for vanadium redox flow battery. Influence of surface engineering on the transport properties of lead sulfide nanomaterials. In-situ growing carbon nanotubes reinforced highly heat dissipative three-dimensional aluminum framework composites. Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction. Probing the synergistic effect of metal-organic framework derived Co-Nx rich interwoven hierarchical porous carbon tube encapsulated dual redox active nanoalloy for high-performance Zn-air battery and supercapacitor applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1