Han Wang, Xiang Li, Yundong Xu, Yaping Tian, Qidan Li, Yongzhen Zhang, Xu Wang, Juan Ni
{"title":"EGCG inhibits the oxidative damage induced by TiO2-NPs in human colon cell lines.","authors":"Han Wang, Xiang Li, Yundong Xu, Yaping Tian, Qidan Li, Yongzhen Zhang, Xu Wang, Juan Ni","doi":"10.14715/cmb/2024.70.11.12","DOIUrl":null,"url":null,"abstract":"<p><p>To assess the protective effects of (-)-Epigallocatechin-3-gallate (EGCG), a natural antioxidant, against cellular oxidative damage induced by titanium dioxide nanoparticles (TiO2-NPs), Human Colon cells NCM460 and Colon Cancer cells SW620 were selected for this study. The cells were divided into three groups: control group, TiO2-NPs (80 μg/mL) exposure group, and EGCG (20 μmol/L)+TiO2-NPs (80 μg/mL) co-exposure group. The study evaluated the precipitation rate of TiO2-NPs influenced by EGCG in a cell-free system. It also measured the levels of ROS, MDA, and total antioxidant capacity in the cells of each group. The uptake of TiO2-NPs by the cells was assessed using the SSCe/SSC0 ratio, and genome instability was evaluated. The results demonstrated that the addition of 20 μmol/L EGCG to the system resulted in greater sedimentation of TiO2-NPs compared to TiO2-NPs alone (P<0.05). The SSCe/SSC0 values in the co-exposure group were significantly lower than those in the TiO2-NPs alone group (P<0.001). TiO2-NPs induced a higher oxidative stress index in the cells (P<0.001), while the co-exposure group exhibited a lower REDOX index (P<0.001). The combination of EGCG and TiO2-NPs did not significantly affect genome instability in either cell line. Importantly, EGCG showed a certain inhibitory effect on oxidative damage to colon cells induced by TiO2-NPs, with no significant difference observed between normal and cancer cells in terms of this protective effect. Conducting a comprehensive investigation into the interaction mechanism between EGCG and TiO2-NPs is crucial for establishing a scientific foundation that can guide the optimal utilization of the antioxidant properties of EGCG to mitigate the toxicity associated with TiO2-NPs.</p>","PeriodicalId":9802,"journal":{"name":"Cellular and molecular biology","volume":"70 11","pages":"82-88"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.11.12","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the protective effects of (-)-Epigallocatechin-3-gallate (EGCG), a natural antioxidant, against cellular oxidative damage induced by titanium dioxide nanoparticles (TiO2-NPs), Human Colon cells NCM460 and Colon Cancer cells SW620 were selected for this study. The cells were divided into three groups: control group, TiO2-NPs (80 μg/mL) exposure group, and EGCG (20 μmol/L)+TiO2-NPs (80 μg/mL) co-exposure group. The study evaluated the precipitation rate of TiO2-NPs influenced by EGCG in a cell-free system. It also measured the levels of ROS, MDA, and total antioxidant capacity in the cells of each group. The uptake of TiO2-NPs by the cells was assessed using the SSCe/SSC0 ratio, and genome instability was evaluated. The results demonstrated that the addition of 20 μmol/L EGCG to the system resulted in greater sedimentation of TiO2-NPs compared to TiO2-NPs alone (P<0.05). The SSCe/SSC0 values in the co-exposure group were significantly lower than those in the TiO2-NPs alone group (P<0.001). TiO2-NPs induced a higher oxidative stress index in the cells (P<0.001), while the co-exposure group exhibited a lower REDOX index (P<0.001). The combination of EGCG and TiO2-NPs did not significantly affect genome instability in either cell line. Importantly, EGCG showed a certain inhibitory effect on oxidative damage to colon cells induced by TiO2-NPs, with no significant difference observed between normal and cancer cells in terms of this protective effect. Conducting a comprehensive investigation into the interaction mechanism between EGCG and TiO2-NPs is crucial for establishing a scientific foundation that can guide the optimal utilization of the antioxidant properties of EGCG to mitigate the toxicity associated with TiO2-NPs.
期刊介绍:
Cellular and Molecular Biology publishes original articles, reviews, short communications, methods, meta-analysis notes, letters to editor and comments in the interdisciplinary science of Cellular and Molecular Biology linking and integrating molecular biology, biophysics, biochemistry, enzymology, physiology and biotechnology in a dynamic cell and tissue biology environment, applied to human, animals, plants tissues as well to microbial and viral cells. The journal Cellular and Molecular Biology is therefore open to intense interdisciplinary exchanges in medical, dental, veterinary, pharmacological, botanical and biological researches for the demonstration of these multiple links.