Xuan Wang , Jin Kuang , Xiao-Tian Li , Xi Hu , Yu-Hang Liu , Chang-Ping Hu , Mi Wang , Qing Wang , Zheng Zhang
{"title":"Dimethyl fumarate is repurposed to ameliorate aortic aneurysm and dissection in mice","authors":"Xuan Wang , Jin Kuang , Xiao-Tian Li , Xi Hu , Yu-Hang Liu , Chang-Ping Hu , Mi Wang , Qing Wang , Zheng Zhang","doi":"10.1016/j.ejphar.2024.177215","DOIUrl":null,"url":null,"abstract":"<div><div>Aortic aneurysm and dissection pose fatal threats but no effective drug therapies are available. Previous work has been directed to reduce risk factors or target key pathological events, but none of the translational efforts succeeds. Here, we attempt to repurpose dimethyl fumarate (DMF), an FDA-approved immunomodulatory drug for multiple sclerosis, for the treatment of aortic aneurysm and dissection. In three preclinical mouse models of abdominal aortic aneurysm (porcine pancreatic elastase perfusion or CaCl<sub>2</sub> incubation) and thoracic aortic aneurysm and dissection (β-Aminopropionitrile feeding), DMF invariably protected mice from aneurysm growth, aortic dissection, rupture and death. Histological H&E and EVG staining demonstrated aortic architecture-preserving effects of DMF. Through transcriptome profiling and the connectivity map (CMap), we showed that DMF restored SRC-FAK signaling in aortic smooth muscle cells and increased collagen I turnover in the tunica media. Our work suggests the potential of DMF being repurposed for aortic aneurysm and dissection, and highlights the importance of SRC-FAK signaling in aortic homeostasis.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"988 ","pages":"Article 177215"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924009051","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aortic aneurysm and dissection pose fatal threats but no effective drug therapies are available. Previous work has been directed to reduce risk factors or target key pathological events, but none of the translational efforts succeeds. Here, we attempt to repurpose dimethyl fumarate (DMF), an FDA-approved immunomodulatory drug for multiple sclerosis, for the treatment of aortic aneurysm and dissection. In three preclinical mouse models of abdominal aortic aneurysm (porcine pancreatic elastase perfusion or CaCl2 incubation) and thoracic aortic aneurysm and dissection (β-Aminopropionitrile feeding), DMF invariably protected mice from aneurysm growth, aortic dissection, rupture and death. Histological H&E and EVG staining demonstrated aortic architecture-preserving effects of DMF. Through transcriptome profiling and the connectivity map (CMap), we showed that DMF restored SRC-FAK signaling in aortic smooth muscle cells and increased collagen I turnover in the tunica media. Our work suggests the potential of DMF being repurposed for aortic aneurysm and dissection, and highlights the importance of SRC-FAK signaling in aortic homeostasis.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.