{"title":"Application of cyclodextrin-based metal-organic frameworks for multi-drug carriers: A combined experimental and simulation study.","authors":"Ayumi Ohashi, Kazuki Ohshima, Shuji Ohsaki, Hideya Nakamura, Satoru Watano","doi":"10.1016/j.ijpharm.2024.125104","DOIUrl":null,"url":null,"abstract":"<p><p>Combination therapy using multiple drugs has the potential for synergistic therapeutic effects and reduction in the administered dose. Furthermore, when combined with a drug delivery system, the therapeutic agents can effectively be targeted and delivered to the affected area. Therefore, a single carrier capable of encapsulating multiple drugs is of clinical significance. This study focused on cyclodextrin-based metal-organic frameworks (CD-MOFs) with high biocompatibility and hydrophobic and hydrophilic pores, because their amphiphilic pores should be suitable for encapsulating multiple drugs. First, the drug encapsulation ability of 5-fluorouracil (5FU) and ascorbic acid (ASC) into the γ-CD-MOF through experiments was compared with that of grand canonical Monte Carlo (GCMC) simulations. The drugs were suggested to encapsulate in the different pores of γ-CD-MOF depending on the hydrophilicity of the drug. In addition, the multi-drug encapsulation ability of the γ-CD-MOF was experimentally and numerically confirmed. In the simultaneous encapsulation experiments, the encapsulation amounts of 5FU and ASC were measured to be 0.0536 and 1.67 mol/mol, respectively. Also, the GCMC simulation demonstrated the simultaneous encapsulation of the two drugs, in which the encapsulation amounts of 5FU and ASC were calculated as 0.867 and 1.67 mol/mol, respectively. The encapsulation ability of multi-drug with hydrophilicity and hydrophobicity into the γ-CD-MOF was experimentally and numerically confirmed. The findings obtained in this study suggested that γ-CD-MOF will greatly contribute as a multi-drug carrier.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125104"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.125104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Combination therapy using multiple drugs has the potential for synergistic therapeutic effects and reduction in the administered dose. Furthermore, when combined with a drug delivery system, the therapeutic agents can effectively be targeted and delivered to the affected area. Therefore, a single carrier capable of encapsulating multiple drugs is of clinical significance. This study focused on cyclodextrin-based metal-organic frameworks (CD-MOFs) with high biocompatibility and hydrophobic and hydrophilic pores, because their amphiphilic pores should be suitable for encapsulating multiple drugs. First, the drug encapsulation ability of 5-fluorouracil (5FU) and ascorbic acid (ASC) into the γ-CD-MOF through experiments was compared with that of grand canonical Monte Carlo (GCMC) simulations. The drugs were suggested to encapsulate in the different pores of γ-CD-MOF depending on the hydrophilicity of the drug. In addition, the multi-drug encapsulation ability of the γ-CD-MOF was experimentally and numerically confirmed. In the simultaneous encapsulation experiments, the encapsulation amounts of 5FU and ASC were measured to be 0.0536 and 1.67 mol/mol, respectively. Also, the GCMC simulation demonstrated the simultaneous encapsulation of the two drugs, in which the encapsulation amounts of 5FU and ASC were calculated as 0.867 and 1.67 mol/mol, respectively. The encapsulation ability of multi-drug with hydrophilicity and hydrophobicity into the γ-CD-MOF was experimentally and numerically confirmed. The findings obtained in this study suggested that γ-CD-MOF will greatly contribute as a multi-drug carrier.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.