Annalisa Martorana , Giorgia Puleo , Giovanni Carlo Miceli , Francesco Cancilla , Mariano Licciardi , Giovanna Pitarresi , Luigi Tranchina , Maurizio Marrale , Fabio Salvatore Palumbo
{"title":"Redox/NIR dual-responsive glutathione extended polyurethane urea electrospun membranes for synergistic chemo-photothermal therapy","authors":"Annalisa Martorana , Giorgia Puleo , Giovanni Carlo Miceli , Francesco Cancilla , Mariano Licciardi , Giovanna Pitarresi , Luigi Tranchina , Maurizio Marrale , Fabio Salvatore Palumbo","doi":"10.1016/j.ijpharm.2024.125108","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect. Electrospinning conditions were optimized to fabricate AuNR-loaded scaffolds, at three different AuNRs concentrations. The obtained membranes were characterized by scanning electron microscopy (SEM) analyses and photothermal profiles were evaluated by a thermocamera, showing a temperature increase, up to 42.5 °C, when exposed to NIR light (810 nm) at 3 W/cm<sup>2</sup>. The AuNRs/PTX loaded scaffolds exhibited sustained PTX release, with 15 % released over 30 days and almost 1.8 times more in a simulated reductive environment. Moreover, their excellent photothermal effects and NIR light-triggered release led to significant synergic cytotoxicity in human colon cancer (HCT-116) and human breast cancer (MCF-7) cell lines. This system potentially enables controllable locoregional PTX release at the tumour site post-surgery, preventing recurrence and enhancing cytotoxicity through combined drug and PTT effects, highlighting its potential for future anticancer treatments.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125108"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324013425","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect. Electrospinning conditions were optimized to fabricate AuNR-loaded scaffolds, at three different AuNRs concentrations. The obtained membranes were characterized by scanning electron microscopy (SEM) analyses and photothermal profiles were evaluated by a thermocamera, showing a temperature increase, up to 42.5 °C, when exposed to NIR light (810 nm) at 3 W/cm2. The AuNRs/PTX loaded scaffolds exhibited sustained PTX release, with 15 % released over 30 days and almost 1.8 times more in a simulated reductive environment. Moreover, their excellent photothermal effects and NIR light-triggered release led to significant synergic cytotoxicity in human colon cancer (HCT-116) and human breast cancer (MCF-7) cell lines. This system potentially enables controllable locoregional PTX release at the tumour site post-surgery, preventing recurrence and enhancing cytotoxicity through combined drug and PTT effects, highlighting its potential for future anticancer treatments.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.