Xiao Wu, Hao Wu, Mengli Zhong, Yixuan Chen, Weiwei Su, Peibo Li
{"title":"Epigenetic regulation by naringenin and naringin: A literature review focused on the mechanisms underlying its pharmacological effects","authors":"Xiao Wu, Hao Wu, Mengli Zhong, Yixuan Chen, Weiwei Su, Peibo Li","doi":"10.1016/j.fitote.2024.106353","DOIUrl":null,"url":null,"abstract":"<div><div>Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries. Naringenin and naringin exhibit a broad spectrum of biological activities and pharmacological effects, including anti-cancer, cardiovascular disease improving, anti-inflammatory, and anti-oxidant activities, all of which are advantageous for human health. Recent studies have uncovered that naringenin and naringin influence gene expression by modulating epigenetic pathways, including microRNA (miRNA) regulation. This mechanism plays a crucial role in the therapeutic potential for various diseases. This paper reviews the epigenetic researches on the physiological activities of naringenin and naringin. It highlights how these compounds can exert diverse effects through different signaling pathways, thereby ameliorating associated diseases. These findings provide valuable insights for the future applications of naringenin and naringin.</div></div>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":"181 ","pages":"Article 106353"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367326X24005367","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries. Naringenin and naringin exhibit a broad spectrum of biological activities and pharmacological effects, including anti-cancer, cardiovascular disease improving, anti-inflammatory, and anti-oxidant activities, all of which are advantageous for human health. Recent studies have uncovered that naringenin and naringin influence gene expression by modulating epigenetic pathways, including microRNA (miRNA) regulation. This mechanism plays a crucial role in the therapeutic potential for various diseases. This paper reviews the epigenetic researches on the physiological activities of naringenin and naringin. It highlights how these compounds can exert diverse effects through different signaling pathways, thereby ameliorating associated diseases. These findings provide valuable insights for the future applications of naringenin and naringin.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.