The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-12-21 DOI:10.1007/s12602-024-10424-y
Luying Sun, Minyi Jia, Kui Zhu, Zhihui Hao, Jianzhong Shen, Shaolin Wang
{"title":"The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria.","authors":"Luying Sun, Minyi Jia, Kui Zhu, Zhihui Hao, Jianzhong Shen, Shaolin Wang","doi":"10.1007/s12602-024-10424-y","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria. The bactericidal efficacy of CA and CAD is characterized by a dose-responsive paradigm, affirming their potential as therapeutic agents. These peptides exhibit minimal cytotoxicity and hemolytic effects, underscoring their safety profile. Advanced experimentation has elucidated that cecropins could disrupt the outer bacterial membrane, targeting lipid A, a pivotal constituent of the lipopolysaccharides (LPS) in the outer membrane as their antimicrobial bullseye. The affinity of cecropins for LPS and their antimicrobial action underscore the therapeutic potential of these peptides in targeting Gram-negative bacterial infections. These insights accentuate the promise of cecropins as viable \"antibiotic substitutes,\" paving the path for their expanded application in combating antibiotic resistance.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10424-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria. The bactericidal efficacy of CA and CAD is characterized by a dose-responsive paradigm, affirming their potential as therapeutic agents. These peptides exhibit minimal cytotoxicity and hemolytic effects, underscoring their safety profile. Advanced experimentation has elucidated that cecropins could disrupt the outer bacterial membrane, targeting lipid A, a pivotal constituent of the lipopolysaccharides (LPS) in the outer membrane as their antimicrobial bullseye. The affinity of cecropins for LPS and their antimicrobial action underscore the therapeutic potential of these peptides in targeting Gram-negative bacterial infections. These insights accentuate the promise of cecropins as viable "antibiotic substitutes," paving the path for their expanded application in combating antibiotic resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天蚕素对多重耐药细菌的疗效与革兰氏阴性菌外膜结构LPS的不稳定有关。
抗生素耐药细菌的日益流行已成为对全球健康的巨大威胁,寻求替代抗菌剂势在必行。抗菌肽(Cecropins)是一类抗菌肽(AMPs),由于其有效的杀菌特性而引起了人们的关注。本研究深入研究了Cecropin A (CA)和Cecropin AD (CAD)的抗菌能力,展示了它们对革兰氏阴性菌(包括多重耐药菌)的强大活性。CA和CAD的杀菌效果以剂量反应模式为特征,肯定了它们作为治疗剂的潜力。这些肽表现出最小的细胞毒性和溶血作用,强调了它们的安全性。先进的实验表明,抗菌肽可以破坏细菌外膜,以脂多糖(LPS)的关键成分脂质A作为抗菌靶心。抗菌肽对脂多糖的亲和力及其抗菌作用强调了这些肽在针对革兰氏阴性细菌感染方面的治疗潜力。这些发现强调了天蚕素作为可行的“抗生素替代品”的前景,为其在对抗抗生素耐药性方面的广泛应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Bibliometric Analysis of Probiotic Bacillus in Food Science: Evolution of Research Trends and Systematic Evaluation. New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides. Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1