{"title":"DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging.","authors":"Linxuan Li, Zhijie Zhang, Yongqing Li, Yanxin Wang, Wei Zhao","doi":"10.1016/j.media.2024.103420","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) is continuously becoming a valuable diagnostic technique in clinical practice. However, the radiation dose exposure in the CT scanning process is a public health concern. Within medical diagnoses, mitigating the radiation risk to patients can be achieved by reducing the radiation dose through adjustments in tube current and/or the number of projections. Nevertheless, dose reduction introduces additional noise and artifacts, which have extremely detrimental effects on clinical diagnosis and subsequent analysis. In recent years, the feasibility of applying deep learning methods to low-dose CT (LDCT) imaging has been demonstrated, leading to significant achievements. This article proposes a dual-domain joint optimization LDCT imaging framework (termed DDoCT) which uses noisy sparse-view projection to reconstruct high-performance CT images with joint optimization in projection and image domains. The proposed method not only addresses the noise introduced by reducing tube current, but also pays special attention to issues such as streak artifacts caused by a reduction in the number of projections, enhancing the applicability of DDoCT in practical fast LDCT imaging environments. Experimental results have demonstrated that DDoCT has made significant progress in reducing noise and streak artifacts and enhancing the contrast and clarity of the images.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103420"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103420","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Computed tomography (CT) is continuously becoming a valuable diagnostic technique in clinical practice. However, the radiation dose exposure in the CT scanning process is a public health concern. Within medical diagnoses, mitigating the radiation risk to patients can be achieved by reducing the radiation dose through adjustments in tube current and/or the number of projections. Nevertheless, dose reduction introduces additional noise and artifacts, which have extremely detrimental effects on clinical diagnosis and subsequent analysis. In recent years, the feasibility of applying deep learning methods to low-dose CT (LDCT) imaging has been demonstrated, leading to significant achievements. This article proposes a dual-domain joint optimization LDCT imaging framework (termed DDoCT) which uses noisy sparse-view projection to reconstruct high-performance CT images with joint optimization in projection and image domains. The proposed method not only addresses the noise introduced by reducing tube current, but also pays special attention to issues such as streak artifacts caused by a reduction in the number of projections, enhancing the applicability of DDoCT in practical fast LDCT imaging environments. Experimental results have demonstrated that DDoCT has made significant progress in reducing noise and streak artifacts and enhancing the contrast and clarity of the images.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.