Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens.

IF 3.3 3区 生物学 Q2 ECOLOGY Microbial Ecology Pub Date : 2024-12-21 DOI:10.1007/s00248-024-02472-2
Srishti Singh, Alok Kumar Singh, Bhubaneswar Pradhan, Sudipta Tripathi, Kewat Sanjay Kumar, Sasmita Chand, Prangya Ranjan Rout, Muhammad Kashif Shahid
{"title":"Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens.","authors":"Srishti Singh, Alok Kumar Singh, Bhubaneswar Pradhan, Sudipta Tripathi, Kewat Sanjay Kumar, Sasmita Chand, Prangya Ranjan Rout, Muhammad Kashif Shahid","doi":"10.1007/s00248-024-02472-2","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining and enhancing agricultural productivity for food security while preserving the ecology and environment from the harmful effects of toxicants is the main challenge in modern monoculture farming systems. Microbial biological agents can be a promising substitute for traditional synthetic pesticides to manage plant diseases. Trichoderma spp. are soil-dwelling ascomycete fungi and are common biocontrol agents against diverse phytopathogens. Trichoderma-based biocontrol techniques can regulate and control soil-borne plant diseases through mechanisms such as mycoparasitism, the production of antibiotics and hydrolytic enzymes, rhizo-sphere competence, the effective competition for available resources, induction of plant resistance and facilitation of plant growth. Numerous secondary metabolites produced by Trichoderma spp. are reported to prevent the development of soil-borne plant disease. Thus, Trichoderma spp. may have direct and indirect biological impacts on the targeted plant pathogens. Furthermore, this review discusses the convenient implications and challenges of applying Trichoderma-based strategies in agricultural settings. Overall, the assessment underscores the potential of Trichoderma as a sustainable and effective tool for mitigating soil-borne pathogens, highlighting avenues for future research and applications.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"158"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02472-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining and enhancing agricultural productivity for food security while preserving the ecology and environment from the harmful effects of toxicants is the main challenge in modern monoculture farming systems. Microbial biological agents can be a promising substitute for traditional synthetic pesticides to manage plant diseases. Trichoderma spp. are soil-dwelling ascomycete fungi and are common biocontrol agents against diverse phytopathogens. Trichoderma-based biocontrol techniques can regulate and control soil-borne plant diseases through mechanisms such as mycoparasitism, the production of antibiotics and hydrolytic enzymes, rhizo-sphere competence, the effective competition for available resources, induction of plant resistance and facilitation of plant growth. Numerous secondary metabolites produced by Trichoderma spp. are reported to prevent the development of soil-borne plant disease. Thus, Trichoderma spp. may have direct and indirect biological impacts on the targeted plant pathogens. Furthermore, this review discusses the convenient implications and challenges of applying Trichoderma-based strategies in agricultural settings. Overall, the assessment underscores the potential of Trichoderma as a sustainable and effective tool for mitigating soil-borne pathogens, highlighting avenues for future research and applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用木霉作为土壤植物病原菌管理的工具。
维持和提高农业生产力以保障粮食安全,同时保护生态和环境免受有毒物质的有害影响,是现代单一栽培农业系统面临的主要挑战。微生物制剂是一种很有前景的替代传统合成农药治理植物病害的方法。木霉是一种生活在土壤中的子囊真菌,是防治多种植物病原菌的常用生物制剂。基于木霉的生物防治技术可以通过真菌寄生、抗生素和水解酶的产生、根际竞争力、对可用资源的有效竞争、诱导植物抗性和促进植物生长等机制来调节和控制土壤传播的植物疾病。据报道,木霉产生的许多次生代谢物可以防止土传植物疾病的发展。因此,木霉可能对目标植物病原体有直接和间接的生物学影响。此外,本文还讨论了在农业环境中应用基于木霉的策略的便利意义和挑战。总体而言,该评估强调了木霉作为减轻土壤传播病原体的可持续和有效工具的潜力,强调了未来研究和应用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
期刊最新文献
Bacterial and Fungal Communities Respond Differently to Changing Soil Properties Along Afforestation Dynamic. Deciphering the Distinct Associations of Rhizospheric and Endospheric Microbiomes with Capsicum Plant Pathological Status. Agricultural Practices and Environmental Factors Drive Microbial Communities in the Mezcal-Producing Agave angustifolia Haw. Correction to: Study of Different Cultivated Plants Rhizosphere Soil Fungi-Mediated Pectinase: Insights into Production, Optimization, Purification, Biocompatibility, and Application. A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1