{"title":"TRPA1 contributes to respiratory depression from tobacco aerosol.","authors":"Sichong Chen, Nobuaki Takahashi, Momoka Okahara, Hideki Kashiwadani, Yasuo Mori, Liying Hao, Tomoyuki Kuwaki","doi":"10.1016/j.resp.2024.104385","DOIUrl":null,"url":null,"abstract":"<p><p>Transient receptor potential ankyrin-1 (TRPA1) is expressed in the trigeminal nerves in the nasal cavity. It detects irritant chemicals such as formalin and acrolein, induces respiratory depression to protect against further inhalation, and elicits avoidance behavior. Although tobacco smoke contains formalin, acrolein, and other irritant chemicals, the possible contribution of TRPA1 to protection against tobacco smoke has yet to be fully understood. In this study, we compared respiratory and behavioral responses to an aerosol of tobacco smoke between TRPA1 conditional knockout mice and the controls. We also compared the effect of aerosols from the smoke of traditional standard tobacco and a recently developed heated tobacco product. As expected, respiratory depression by tobacco aerosol was observed only in the TRPA1 intact mice and was associated with increased trigeminal activation. Meanwhile, mice did not avoid or even prefer tobacco aerosol in a TRPA1-independent manner, contrary to our expectations. Repeated exposure to tobacco aerosol resulted in lung inflammation in a TRPA1-independent manner. Aerosols from a heated tobacco product showed no significant effect as in traditional tobacco smoke. These results indicate that TRPA1 contributes to acute protection from tobacco smoke by inducing respiratory depression but not to the safety of the lungs in repeated exposure. Tobacco aerosol contains attractive substances for mice. Heated tobacco product aerosol contains less TRPA1 activating substances and less inflammation evoking than traditional tobacco smoke.</p>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":" ","pages":"104385"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.resp.2024.104385","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transient receptor potential ankyrin-1 (TRPA1) is expressed in the trigeminal nerves in the nasal cavity. It detects irritant chemicals such as formalin and acrolein, induces respiratory depression to protect against further inhalation, and elicits avoidance behavior. Although tobacco smoke contains formalin, acrolein, and other irritant chemicals, the possible contribution of TRPA1 to protection against tobacco smoke has yet to be fully understood. In this study, we compared respiratory and behavioral responses to an aerosol of tobacco smoke between TRPA1 conditional knockout mice and the controls. We also compared the effect of aerosols from the smoke of traditional standard tobacco and a recently developed heated tobacco product. As expected, respiratory depression by tobacco aerosol was observed only in the TRPA1 intact mice and was associated with increased trigeminal activation. Meanwhile, mice did not avoid or even prefer tobacco aerosol in a TRPA1-independent manner, contrary to our expectations. Repeated exposure to tobacco aerosol resulted in lung inflammation in a TRPA1-independent manner. Aerosols from a heated tobacco product showed no significant effect as in traditional tobacco smoke. These results indicate that TRPA1 contributes to acute protection from tobacco smoke by inducing respiratory depression but not to the safety of the lungs in repeated exposure. Tobacco aerosol contains attractive substances for mice. Heated tobacco product aerosol contains less TRPA1 activating substances and less inflammation evoking than traditional tobacco smoke.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.