Injectable nanocomposite hydrogels with co-delivery of oxygen and anticancer drugs for higher cell viability of healthy cells than cancer cells under normoxic and hypoxic conditions.

Nermin Seda Kehr
{"title":"Injectable nanocomposite hydrogels with co-delivery of oxygen and anticancer drugs for higher cell viability of healthy cells than cancer cells under normoxic and hypoxic conditions.","authors":"Nermin Seda Kehr","doi":"10.1088/1748-605X/ada240","DOIUrl":null,"url":null,"abstract":"<p><p>Injectable nanocomposite hydrogels (NC hydrogels) have the potential to be used for minimally invasive local drug delivery. In particular, pH-sensitive injectable NC hydrogels can be used in cancer treatment to deliver high doses of anticancer drugs to the target site in cancer tissue without damaging healthy tissue. Recent studies have shown that in addition to stimuli-responsive delivery of anticancer drugs to cancer cells, oxygen delivery to the hypoxic environment of cancer tissue can lead to advanced effects, as hypoxia and an acidic pH are common characteristics of cancer tissue. However, few studies have investigated the effects of simultaneous administration of oxygen (O2) and pH-dependent anticancer drugs via injectable NC hydrogels on the viability of healthy and cancer cells under normoxic and hypoxic conditions. In this context, we describe the synthesis of injectable NC hydrogels composed of pH-responsive nanomaterials carrying oxygen and anticancer drugs. Our system provides sustained O2 release and pH-responsive sustained release of anticancer drugs for 15 and 30 days, respectively. Moreover, O2 delivery and/or simultaneous delivery of O2 and anticancer drug resulted in higher cell survival of healthy fibroblast cells than malignant Colo-818 cells under hypoxic conditions (1% O2) after 7 days of incubation.&#xD.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Injectable nanocomposite hydrogels (NC hydrogels) have the potential to be used for minimally invasive local drug delivery. In particular, pH-sensitive injectable NC hydrogels can be used in cancer treatment to deliver high doses of anticancer drugs to the target site in cancer tissue without damaging healthy tissue. Recent studies have shown that in addition to stimuli-responsive delivery of anticancer drugs to cancer cells, oxygen delivery to the hypoxic environment of cancer tissue can lead to advanced effects, as hypoxia and an acidic pH are common characteristics of cancer tissue. However, few studies have investigated the effects of simultaneous administration of oxygen (O2) and pH-dependent anticancer drugs via injectable NC hydrogels on the viability of healthy and cancer cells under normoxic and hypoxic conditions. In this context, we describe the synthesis of injectable NC hydrogels composed of pH-responsive nanomaterials carrying oxygen and anticancer drugs. Our system provides sustained O2 release and pH-responsive sustained release of anticancer drugs for 15 and 30 days, respectively. Moreover, O2 delivery and/or simultaneous delivery of O2 and anticancer drug resulted in higher cell survival of healthy fibroblast cells than malignant Colo-818 cells under hypoxic conditions (1% O2) after 7 days of incubation. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decellularized cartilage tissue bioink formulation for osteochondral graft development. Improvement of cellular pattern organization and clarity through centrifugal force. Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices. Zinc-doped hydroxyapatite loaded chitosan gelatin nanocomposite scaffolds as a promising platform for bone regeneration. Construction of a multifunctional bio-probe based on lanthanides for UCL/MR/CT multimodal imaging in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1