Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.

Yumeng Li, Jiaqi Ma, Jing Wang, Yanlei Kong, Feng Wang, Pengfei Zhang, Fan Yawei
{"title":"Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.","authors":"Yumeng Li, Jiaqi Ma, Jing Wang, Yanlei Kong, Feng Wang, Pengfei Zhang, Fan Yawei","doi":"10.1088/1748-605X/ada241","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA. In the end, we developed a scaffold that has outstanding structural integrity and can repair bone defects. Achieving high-quality UV-DIW printing can be challenging due to a variety of factors (slurry solid content, rheology, printing conditions, etc.).At present, there are limited reports about precise parameter configurations for UV-DIW printing. We optimised the solid composition of the slurry by varying the quantities of nHA and PEGDA, establishing the maximum solid content (40 wt%) permissible for scaffold shaping. Consequently, we examined the influence of several factors (nozzle diameter, air pressure, and printing rate) on the surface morphology of the scaffolds and determined the ideal conditions to attain scaffolds with superior printing accuracy. The findings demonstrate excellent controllability, repeatability, and precision of the entire printing process. Finally, we evaluated the scaffolds that most effectively fulfilled the requirements for bone regeneration by examining their surface morphology and mechanical characteristics. The experimental findings indicate that nHA-PEGDA scaffolds fulfill the compressive strength requirements for bone tissue and possess promising applications in bone regeneration. This study demonstrates that the nHA-PEGDA bioink possesses significant potential as a scaffold material for bone tissue regeneration, exhibiting exceptional shape integrity and mechanical capabilities. The study found the optimal parameters for bio-3D printers and gave UV-DIW an exact data reference for making the nHA-PEGDA scaffold. In addition, it is a useful guide for 3D printing biomaterial scaffolds.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA. In the end, we developed a scaffold that has outstanding structural integrity and can repair bone defects. Achieving high-quality UV-DIW printing can be challenging due to a variety of factors (slurry solid content, rheology, printing conditions, etc.).At present, there are limited reports about precise parameter configurations for UV-DIW printing. We optimised the solid composition of the slurry by varying the quantities of nHA and PEGDA, establishing the maximum solid content (40 wt%) permissible for scaffold shaping. Consequently, we examined the influence of several factors (nozzle diameter, air pressure, and printing rate) on the surface morphology of the scaffolds and determined the ideal conditions to attain scaffolds with superior printing accuracy. The findings demonstrate excellent controllability, repeatability, and precision of the entire printing process. Finally, we evaluated the scaffolds that most effectively fulfilled the requirements for bone regeneration by examining their surface morphology and mechanical characteristics. The experimental findings indicate that nHA-PEGDA scaffolds fulfill the compressive strength requirements for bone tissue and possess promising applications in bone regeneration. This study demonstrates that the nHA-PEGDA bioink possesses significant potential as a scaffold material for bone tissue regeneration, exhibiting exceptional shape integrity and mechanical capabilities. The study found the optimal parameters for bio-3D printers and gave UV-DIW an exact data reference for making the nHA-PEGDA scaffold. In addition, it is a useful guide for 3D printing biomaterial scaffolds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decellularized cartilage tissue bioink formulation for osteochondral graft development. Improvement of cellular pattern organization and clarity through centrifugal force. Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices. Zinc-doped hydroxyapatite loaded chitosan gelatin nanocomposite scaffolds as a promising platform for bone regeneration. Construction of a multifunctional bio-probe based on lanthanides for UCL/MR/CT multimodal imaging in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1