Allison C Nielsen, Connor L Anderson, Carina Ens, Andrew K J Boyce, Roger J Thompson
{"title":"Non-ionotropic NMDAR signalling activates Panx1 to induce P2X4R-dependent long-term depression in the hippocampus.","authors":"Allison C Nielsen, Connor L Anderson, Carina Ens, Andrew K J Boyce, Roger J Thompson","doi":"10.1113/JP285193","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801. After transient MK-801, LTD involved pannexin-1 and sarcoma (Src) kinase. We show that pannexin-1 is not permeable to Ca<sup>2+</sup>, but probably releases ATP to induce LTD via P2X4 purinergic receptors because LTD after transient MK-801 application was prevented by 5-BDBD. Thus, we conclude that niNMDAR activation of Panx1 can link glutamatergic and purinergic pathways to produce LTD following low frequency synaptic stimulation when NMDARs are transiently inhibited. KEY POINTS: Differential effect of short-term D-APV and MK-801 application on long-term depression (LTD) suggests that the NMDA receptor (niNMDAR) contributes to later phases of synaptic depression. niNMDAR LTD involved sarcoma (Src) kinase and pannexin-1 (Panx1), which is a pathway previously identified to be active during excitotoxicity. Panx1 was not calcium permeable but may contribute to late phase LTD via ATP release. Panx1 blockers prevent LTD, and this was rescued with exogenous ATP application. Inhibition of LTD with 5-BDBD suggests the downstream involvement of postsynaptic P2X4 receptors.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP285193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801. After transient MK-801, LTD involved pannexin-1 and sarcoma (Src) kinase. We show that pannexin-1 is not permeable to Ca2+, but probably releases ATP to induce LTD via P2X4 purinergic receptors because LTD after transient MK-801 application was prevented by 5-BDBD. Thus, we conclude that niNMDAR activation of Panx1 can link glutamatergic and purinergic pathways to produce LTD following low frequency synaptic stimulation when NMDARs are transiently inhibited. KEY POINTS: Differential effect of short-term D-APV and MK-801 application on long-term depression (LTD) suggests that the NMDA receptor (niNMDAR) contributes to later phases of synaptic depression. niNMDAR LTD involved sarcoma (Src) kinase and pannexin-1 (Panx1), which is a pathway previously identified to be active during excitotoxicity. Panx1 was not calcium permeable but may contribute to late phase LTD via ATP release. Panx1 blockers prevent LTD, and this was rescued with exogenous ATP application. Inhibition of LTD with 5-BDBD suggests the downstream involvement of postsynaptic P2X4 receptors.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.