Computer-generated Clinical Decision-making in the Treatment of Pulmonary Atresia with Intact Ventricular Septum.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2024-12-20 DOI:10.1007/s13239-024-00769-4
Canberk Yıldırım, Berk Ural, Ender Odemis, Samir Donmazov, Kerem Pekkan
{"title":"Computer-generated Clinical Decision-making in the Treatment of Pulmonary Atresia with Intact Ventricular Septum.","authors":"Canberk Yıldırım, Berk Ural, Ender Odemis, Samir Donmazov, Kerem Pekkan","doi":"10.1007/s13239-024-00769-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pulmonary atresia with intact ventricular septum is a multifactorial disease requiring complex surgeries. The treatment route is determined based on the right ventricle (RV) size, tricuspid annulus size and coronary circulation dependency of RV. Since multiple parameters influence the post-operative success, a personalized decision-making based on computed hemodynamics is hypothesized to improve the treatment efficacy.</p><p><strong>Methods: </strong>A lumped parameter cardiovascular model is developed to calculate the hemodynamics of virtual patients which are generated by statistical distribution of circulation parameters. Four cohorts each with 30 digital patients are grouped based on RV size. For each patient, biventricular and one-and-half ventricle (1.5 V) repair were applied in silico and assessed via pressure, flow and saturations computed for every organ bed.</p><p><strong>Results: </strong>Biventricular and 1.5 V repair yield significant increase in the pulmonary flow and oxygen saturation for all patients compared to the pre-operative state (p-values < 0.001). Approximately 30% of generated patients failed to meet the sufficient saturation and flow following biventricular repair and were directed to 1.5 V repair. However, 14% of these 1.5 V repair patients failed post-operatively, requiring Fontan completion. Based on the pre-determined hemodynamics criteria, this study implies that patients having RV sizes larger than 22 ml/m<sup>2</sup> are likely to undergo successful biventricular repair.</p><p><strong>Conclusion: </strong>Pending further clinical trials, computational pre-interventional planning has the potential to screen patients that would not optimally fit to the traditional pathway prior to in vivo execution by providing personalized hemodynamic outcome. Statistical approach allows in silico clinical trials, useful for diseases with low patient numbers.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00769-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Pulmonary atresia with intact ventricular septum is a multifactorial disease requiring complex surgeries. The treatment route is determined based on the right ventricle (RV) size, tricuspid annulus size and coronary circulation dependency of RV. Since multiple parameters influence the post-operative success, a personalized decision-making based on computed hemodynamics is hypothesized to improve the treatment efficacy.

Methods: A lumped parameter cardiovascular model is developed to calculate the hemodynamics of virtual patients which are generated by statistical distribution of circulation parameters. Four cohorts each with 30 digital patients are grouped based on RV size. For each patient, biventricular and one-and-half ventricle (1.5 V) repair were applied in silico and assessed via pressure, flow and saturations computed for every organ bed.

Results: Biventricular and 1.5 V repair yield significant increase in the pulmonary flow and oxygen saturation for all patients compared to the pre-operative state (p-values < 0.001). Approximately 30% of generated patients failed to meet the sufficient saturation and flow following biventricular repair and were directed to 1.5 V repair. However, 14% of these 1.5 V repair patients failed post-operatively, requiring Fontan completion. Based on the pre-determined hemodynamics criteria, this study implies that patients having RV sizes larger than 22 ml/m2 are likely to undergo successful biventricular repair.

Conclusion: Pending further clinical trials, computational pre-interventional planning has the potential to screen patients that would not optimally fit to the traditional pathway prior to in vivo execution by providing personalized hemodynamic outcome. Statistical approach allows in silico clinical trials, useful for diseases with low patient numbers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机生成的临床决策在完全性室间隔肺闭锁治疗中的应用。
目的:肺闭锁伴室间隔完整是一种多因素疾病,需要复杂的手术治疗。根据右心室(RV)的大小、三尖瓣环的大小和右心室的冠状动脉循环依赖性来确定治疗途径。由于多个参数影响术后成功,假设基于计算血流动力学的个性化决策可以提高治疗效果。方法:建立集总参数心血管模型,计算由循环参数统计分布产生的虚拟患者的血流动力学。根据RV大小分为4组,每组30例数字患者。对于每个患者,双心室和一个半心室(1.5 V)修复应用于计算机,并通过计算每个器官床的压力,流量和饱和度来评估。结果:与术前相比,双心室和1.5 V修复使所有患者的肺流量和氧饱和度显著增加(p值2),可能成功进行双心室修复。结论:在进一步的临床试验中,通过提供个性化的血流动力学结果,计算介入前计划有可能在体内执行之前筛选不适合传统途径的患者。统计方法允许计算机临床试验,对病人数量少的疾病有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia. Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images. The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices. Performance Comparison of Centered and Tilted Blunt and Lighthouse Tip Cannulae for Drainage in Extracorporeal Life Support. A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1