{"title":"A spatiotemporal style transfer algorithm for dynamic visual stimulus generation.","authors":"Antonino Greco, Markus Siegel","doi":"10.1038/s43588-024-00746-w","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how visual information is encoded in biological and artificial systems often requires the generation of appropriate stimuli to test specific hypotheses, but available methods for video generation are scarce. Here we introduce the spatiotemporal style transfer (STST) algorithm, a dynamic visual stimulus generation framework that allows the manipulation and synthesis of video stimuli for vision research. We show how stimuli can be generated that match the low-level spatiotemporal features of their natural counterparts, but lack their high-level semantic features, providing a useful tool to study object recognition. We used these stimuli to probe PredNet, a predictive coding deep network, and found that its next-frame predictions were not disrupted by the omission of high-level information, with human observers also confirming the preservation of low-level features and lack of high-level information in the generated stimuli. We also introduce a procedure for the independent spatiotemporal factorization of dynamic stimuli. Testing such factorized stimuli on humans and deep vision models suggests a spatial bias in how humans and deep vision models encode dynamic visual information. These results showcase potential applications of the STST algorithm as a versatile tool for dynamic stimulus generation in vision science.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00746-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how visual information is encoded in biological and artificial systems often requires the generation of appropriate stimuli to test specific hypotheses, but available methods for video generation are scarce. Here we introduce the spatiotemporal style transfer (STST) algorithm, a dynamic visual stimulus generation framework that allows the manipulation and synthesis of video stimuli for vision research. We show how stimuli can be generated that match the low-level spatiotemporal features of their natural counterparts, but lack their high-level semantic features, providing a useful tool to study object recognition. We used these stimuli to probe PredNet, a predictive coding deep network, and found that its next-frame predictions were not disrupted by the omission of high-level information, with human observers also confirming the preservation of low-level features and lack of high-level information in the generated stimuli. We also introduce a procedure for the independent spatiotemporal factorization of dynamic stimuli. Testing such factorized stimuli on humans and deep vision models suggests a spatial bias in how humans and deep vision models encode dynamic visual information. These results showcase potential applications of the STST algorithm as a versatile tool for dynamic stimulus generation in vision science.