Efficient Hyperbranched Flame Retardant Derived from Quercetin for Use in Epoxy Resin with Well-Balanced Comprehensive Performance

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-12-22 DOI:10.1021/acssuschemeng.4c08829
Yun Zhao, Chengshu Yan, Jiatao Cao, Shuai He, Zhenfeng Huang, Nanlan Shen, Zongmin Zhu, Hai-Bo Zhao, Wenhui Rao
{"title":"Efficient Hyperbranched Flame Retardant Derived from Quercetin for Use in Epoxy Resin with Well-Balanced Comprehensive Performance","authors":"Yun Zhao, Chengshu Yan, Jiatao Cao, Shuai He, Zhenfeng Huang, Nanlan Shen, Zongmin Zhu, Hai-Bo Zhao, Wenhui Rao","doi":"10.1021/acssuschemeng.4c08829","DOIUrl":null,"url":null,"abstract":"Traditional flame retardants, often derived from petrochemical sources, pose significant environmental and health concerns due to their potential toxicity and persistence in the environment. In this study, a biobased hyperbranched polymer flame retardant named QB was synthesized using quercetin and phenylphosphoryl dichloride by a one-step method. The QB copolymer was characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography, revealing its high thermal stability and polymeric nature, with a weight-average molecular weight of 78 299 g/mol. QB was subsequently incorporated into bisphenol A-type epoxy resins using 4–4 diamino diphenylmethane as a curing agent to prepare the flame-retardant epoxy composite. With additions of only 1 wt % QB, EQB-1 achieved a UL 94 V-0 rating in the vertical burning test and an impressive limiting oxygen index (LOI) value of 28.2%. Moreover, the addition of the 3 wt % QB in EP resulted in a maximum reduction of 32.9% in the peak of heat release rate and a 37.4% reduction in the smoke produce rate, indicating its outstanding flame-retardant and smoke suppression properties, which are attributed to a mainly condensed-phase flame-retardant mechanism. Furthermore, the impact and flexural strength of the composite were maintained and a slight improvement was observed. The findings of this research are expected to contribute to the development of environmentally friendly flame-retardant epoxy systems that meet industry standards while promoting the use of renewable materials. This work supports sustainability by replacing petrochemical flame retardants with renewable quercetin-based materials, reducing toxicity and environmental impact.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"287 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08829","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional flame retardants, often derived from petrochemical sources, pose significant environmental and health concerns due to their potential toxicity and persistence in the environment. In this study, a biobased hyperbranched polymer flame retardant named QB was synthesized using quercetin and phenylphosphoryl dichloride by a one-step method. The QB copolymer was characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography, revealing its high thermal stability and polymeric nature, with a weight-average molecular weight of 78 299 g/mol. QB was subsequently incorporated into bisphenol A-type epoxy resins using 4–4 diamino diphenylmethane as a curing agent to prepare the flame-retardant epoxy composite. With additions of only 1 wt % QB, EQB-1 achieved a UL 94 V-0 rating in the vertical burning test and an impressive limiting oxygen index (LOI) value of 28.2%. Moreover, the addition of the 3 wt % QB in EP resulted in a maximum reduction of 32.9% in the peak of heat release rate and a 37.4% reduction in the smoke produce rate, indicating its outstanding flame-retardant and smoke suppression properties, which are attributed to a mainly condensed-phase flame-retardant mechanism. Furthermore, the impact and flexural strength of the composite were maintained and a slight improvement was observed. The findings of this research are expected to contribute to the development of environmentally friendly flame-retardant epoxy systems that meet industry standards while promoting the use of renewable materials. This work supports sustainability by replacing petrochemical flame retardants with renewable quercetin-based materials, reducing toxicity and environmental impact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Phenylphosphoryl dichloride (BPOD)
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Green Synthesis of Cellulose Acetate Mixed Matrix Membranes: Structure–Function Characterization Collaborating for Impact: Navigating Partnerships and Overcoming Challenges across the Sustainable Development Goals Highly Efficient Bifunctional NiFe-MOF Array Electrode for Nitrate Reduction to Ammonia and Oxygen Evolution Reactions Efficient Acetoin Production in Bacillus subtilis by Multivariate Modular Metabolic Engineering with Spatiotemporal Modulation Advanced Polymeric Binders in Aqueous Zinc Ion Batteries: Dynamic Diselenide Bonds as Unique Cofactors for Improving Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1