Maria Gusseva, Nikhil Thatte, Daniel A. Castellanos, Peter E. Hammer, Sunil J. Ghelani, Ryan Callahan, Tarique Hussain, Radomír Chabiniok
{"title":"Biomechanical modeling combined with pressure-volume loop analysis to aid surgical planning in patients with complex congenital heart disease","authors":"Maria Gusseva, Nikhil Thatte, Daniel A. Castellanos, Peter E. Hammer, Sunil J. Ghelani, Ryan Callahan, Tarique Hussain, Radomír Chabiniok","doi":"10.1016/j.media.2024.103441","DOIUrl":null,"url":null,"abstract":"Patients with congenitally corrected transposition of the great arteries (ccTGA) can be treated with a double switch operation (DSO) to restore the normal anatomical connection of the left ventricle (LV) to the systemic circulation and the right ventricle (RV) to the pulmonary circulation. The subpulmonary LV progressively deconditions over time due to its connection to the low pressure pulmonary circulation and needs to be retrained using a surgical pulmonary artery band (PAB) for 6–12 months prior to the DSO. The subsequent clinical follow-up, consisting of invasive cardiac pressure and non-invasive imaging data, evaluates LV preparedness for the DSO. Evaluation using standard clinical techniques has led to unacceptable LV failure rates of ∼15 % after DSO. We propose a computational modeling framework to (1) reconstruct LV and RV pressure-volume (PV) loops from non-simultaneously acquired imaging and pressure data and gather model-derived mechanical indicators of ventricular function; and (2) perform <ce:italic>in silico</ce:italic> DSO to predict the functional response of the LV when connected to the high-pressure systemic circulation.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"139 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103441","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with congenitally corrected transposition of the great arteries (ccTGA) can be treated with a double switch operation (DSO) to restore the normal anatomical connection of the left ventricle (LV) to the systemic circulation and the right ventricle (RV) to the pulmonary circulation. The subpulmonary LV progressively deconditions over time due to its connection to the low pressure pulmonary circulation and needs to be retrained using a surgical pulmonary artery band (PAB) for 6–12 months prior to the DSO. The subsequent clinical follow-up, consisting of invasive cardiac pressure and non-invasive imaging data, evaluates LV preparedness for the DSO. Evaluation using standard clinical techniques has led to unacceptable LV failure rates of ∼15 % after DSO. We propose a computational modeling framework to (1) reconstruct LV and RV pressure-volume (PV) loops from non-simultaneously acquired imaging and pressure data and gather model-derived mechanical indicators of ventricular function; and (2) perform in silico DSO to predict the functional response of the LV when connected to the high-pressure systemic circulation.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.