{"title":"Aziridine-Based Organocatalytic Polymerization for Tunable Sulfur Incorporation in Polyureas","authors":"Leying Xu, Changzheng Ju, Jiazi Zheng, Qingyong Chen, Zhen Zhang","doi":"10.1039/d4py01171f","DOIUrl":null,"url":null,"abstract":"Developing new methods for converting inorganic sulfur into sulfur-containing polymers is crucial for advancing both sustainable development and innovative polymeric materials. In this study, we present an aziridine-based polymerization strategy to synthesize polyureas with tunable sulfur incorporation. The process begins with the reaction of aziridine with isocyanate, followed by a ring-opening reaction with an inorganic sulfur reagent. When elemental sulfur is used, oligosulfide anions form in the presence of an organobase, which then nucleophilically attack the aziridine ring, producing oligosulfide-functionalized polyureas. Alternatively, using sodium sulfide generates poly(thioether urea)s through a similar ring-opening mechanism. Model reactions confirm successful sulfur incorporation during these processes. Additionally, a cross-linked polyurea synthesized with tri-isocyanate exhibits excellent mechanical properties, with tensile stress exceeding 30 MPa, and demonstrates good reprocessability due to the dynamic nature of the oligosulfide bonds. Overall, this polymerization approach broadens the range of sulfur-containing materials and supports further advances in aziridine-based polymer chemistry.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"31 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01171f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Developing new methods for converting inorganic sulfur into sulfur-containing polymers is crucial for advancing both sustainable development and innovative polymeric materials. In this study, we present an aziridine-based polymerization strategy to synthesize polyureas with tunable sulfur incorporation. The process begins with the reaction of aziridine with isocyanate, followed by a ring-opening reaction with an inorganic sulfur reagent. When elemental sulfur is used, oligosulfide anions form in the presence of an organobase, which then nucleophilically attack the aziridine ring, producing oligosulfide-functionalized polyureas. Alternatively, using sodium sulfide generates poly(thioether urea)s through a similar ring-opening mechanism. Model reactions confirm successful sulfur incorporation during these processes. Additionally, a cross-linked polyurea synthesized with tri-isocyanate exhibits excellent mechanical properties, with tensile stress exceeding 30 MPa, and demonstrates good reprocessability due to the dynamic nature of the oligosulfide bonds. Overall, this polymerization approach broadens the range of sulfur-containing materials and supports further advances in aziridine-based polymer chemistry.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.