Diversification of single-cell growth dynamics under starvation influences subsequent reproduction in a clonal bacterial population

Sotaro Takano, Miki Umetani, Hidenori Nakaoka, Ryo Miyazaki
{"title":"Diversification of single-cell growth dynamics under starvation influences subsequent reproduction in a clonal bacterial population","authors":"Sotaro Takano, Miki Umetani, Hidenori Nakaoka, Ryo Miyazaki","doi":"10.1093/ismejo/wrae257","DOIUrl":null,"url":null,"abstract":"Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population. Here, we tracked growth of individual Escherichia coli cells in populations under fluctuating nutrient conditions. We found that shifting from high- to low-nutrient conditions caused stalling of cell growth with few cells continuing to divide extremely slowly, a process which was dependent on lipid turnover. Resuming high-nutrient inflow after low-nutrient conditions resulted in cells resuming growth and division, but with different lag times and leading to varying progeny. The history of cell growth during low-nutrient but not high-nutrient conditions was determinant for resumption of growth, which cellular genealogy analysis suggested to originate from inherited physiological differences. Our results demonstrate that cellular growth dynamics become diverse by nutrient limitations, under which a fraction of cells experienced a particular growth history can reproduce progeny with new resources in the future.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population. Here, we tracked growth of individual Escherichia coli cells in populations under fluctuating nutrient conditions. We found that shifting from high- to low-nutrient conditions caused stalling of cell growth with few cells continuing to divide extremely slowly, a process which was dependent on lipid turnover. Resuming high-nutrient inflow after low-nutrient conditions resulted in cells resuming growth and division, but with different lag times and leading to varying progeny. The history of cell growth during low-nutrient but not high-nutrient conditions was determinant for resumption of growth, which cellular genealogy analysis suggested to originate from inherited physiological differences. Our results demonstrate that cellular growth dynamics become diverse by nutrient limitations, under which a fraction of cells experienced a particular growth history can reproduce progeny with new resources in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饥饿条件下单细胞生长动态的多样化影响克隆细菌群体的后续繁殖
自然界中的大多数微生物很少得到营养,因此处于缓慢或不生长的状态。随着新资源的涌入,它们能以多快的速度恢复增长,这对占据环境利基至关重要。已知等基因微生物种群中只有一小部分细胞能快速恢复生长,但对这些细胞的生理特性及其在种群中的出现知之甚少。在这里,我们追踪了在波动的营养条件下大肠杆菌个体细胞的生长情况。我们发现,从高营养条件到低营养条件的转变导致细胞生长停滞,少数细胞继续极慢地分裂,这一过程依赖于脂质周转。在低营养条件下恢复高营养流入导致细胞恢复生长和分裂,但延迟时间不同,导致不同的后代。细胞在低营养条件下而非高营养条件下的生长历史是恢复生长的决定因素,细胞谱系分析表明这源于遗传生理差异。我们的研究结果表明,细胞生长动力学受到营养限制而变得多样化,在这种限制下,一部分经历过特定生长历史的细胞可以在未来用新的资源繁殖后代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic and species rearrangements in microbial consortia impact biodegradation potential Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. Tolerance to land-use changes through natural modulations of the plant microbiome Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments Dispersal promotes stability and persistence of exploited yeast mutualisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1