Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2024-12-23 DOI:10.1021/acs.macromol.4c02417
Hongwei Li, Dmitry Tolmachev, Piotr Batys, Maria Sammalkorpi, Jodie L. Lutkenhaus
{"title":"Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes","authors":"Hongwei Li, Dmitry Tolmachev, Piotr Batys, Maria Sammalkorpi, Jodie L. Lutkenhaus","doi":"10.1021/acs.macromol.4c02417","DOIUrl":null,"url":null,"abstract":"Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (<i>T</i><sub>g</sub>). Except for glycerol, all alcohol solvents yield PECs with detectable <i>T</i><sub>g</sub>’s and plasticization behavior. Furthermore, a linear relationship for 1/<i>T</i><sub>g</sub> and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(<i>n</i><sub>hydroxyl</sub>/<i>n</i><sub>intrinsic-ion-pair</sub>)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent’s OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC’s glass transition on the solvent’s chemical structure provides a simple guideline for predicting their relationship.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"41 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (Tg). Except for glycerol, all alcohol solvents yield PECs with detectable Tg’s and plasticization behavior. Furthermore, a linear relationship for 1/Tg and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(nhydroxyl/nintrinsic-ion-pair)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent’s OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC’s glass transition on the solvent’s chemical structure provides a simple guideline for predicting their relationship.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Design of Isocyanate-Free Biobased Polyurea Vitrimers with Dynamic Hydrogen and Imine Bonds, Offering Ambient Self-Healing, Reprocessing, and Recycling Properties Formation of Disordered Cocontinuous Phases by Randomly Linked Star Copolymers Green Light-Controlled Switchable Photoiniferter Polymerization Shape Memory Supramolecular Polymer Gels Constructed by Pillar[5]arene-Based Mechanically Interlocked Polymer Networks Sustainable Terephthalic Polyesters with Medium/Long Methylene Sequence: Structure–Property Relationships and Closed-Loop Chemical Recycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1