Impact of micro-habitat fragmentation on microbial population growth dynamics

Dina Mant, Tomer Orevi, Nadav Kashtan
{"title":"Impact of micro-habitat fragmentation on microbial population growth dynamics","authors":"Dina Mant, Tomer Orevi, Nadav Kashtan","doi":"10.1093/ismejo/wrae256","DOIUrl":null,"url":null,"abstract":"Microbial communities thrive in virtually every habitat on Earth and are essential to the function of diverse ecosystems. Most microbial habitats are not spatially continuous and well-mixed, but rather composed, at the microscale, of many isolated or semi-isolated local patches of different sizes, resulting in partitioning of microbial populations into discrete local populations. The impact of this spatial fragmentation on population dynamics is not well-understood. Here, we study how such variably sized micro-habitat patches affect the growth dynamics of clonal microbial populations and how dynamics in individual patches dictate those of the metapopulation. To investigate this, we developed the μ-SPLASH, an ecology-on-a-chip platform, enabling the culture of microbes in microscopic landscapes comprised of thousands of microdroplets, with a wide range of sizes. Using the μ-SPLASH, we cultured the model bacteria E. coli and based on time-lapse microscopy, analyzed the population dynamics within thousands of individual droplets. Our results reveal that growth curves substantially vary with droplet size. Although growth rates generally increase with drop size, reproductive success and the time to approach carrying capacity, display non-monotonic patterns. Combining μ-SPLASH experiments with computational modeling, we show that these patterns result from both stochastic and deterministic processes, and demonstrate the roles of initial population density, patchiness, and patch size distribution in dictating the local and metapopulation dynamics. This study reveals basic principles that elucidate the effects of habitat fragmentation and population partitioning on microbial population dynamics. These insights deepen our understanding of natural microbial communities and have significant implications for microbiome engineering.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial communities thrive in virtually every habitat on Earth and are essential to the function of diverse ecosystems. Most microbial habitats are not spatially continuous and well-mixed, but rather composed, at the microscale, of many isolated or semi-isolated local patches of different sizes, resulting in partitioning of microbial populations into discrete local populations. The impact of this spatial fragmentation on population dynamics is not well-understood. Here, we study how such variably sized micro-habitat patches affect the growth dynamics of clonal microbial populations and how dynamics in individual patches dictate those of the metapopulation. To investigate this, we developed the μ-SPLASH, an ecology-on-a-chip platform, enabling the culture of microbes in microscopic landscapes comprised of thousands of microdroplets, with a wide range of sizes. Using the μ-SPLASH, we cultured the model bacteria E. coli and based on time-lapse microscopy, analyzed the population dynamics within thousands of individual droplets. Our results reveal that growth curves substantially vary with droplet size. Although growth rates generally increase with drop size, reproductive success and the time to approach carrying capacity, display non-monotonic patterns. Combining μ-SPLASH experiments with computational modeling, we show that these patterns result from both stochastic and deterministic processes, and demonstrate the roles of initial population density, patchiness, and patch size distribution in dictating the local and metapopulation dynamics. This study reveals basic principles that elucidate the effects of habitat fragmentation and population partitioning on microbial population dynamics. These insights deepen our understanding of natural microbial communities and have significant implications for microbiome engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ecological histories govern social exploitation by microorganisms Diversification of single-cell growth dynamics under starvation influences subsequent reproduction in a clonal bacterial population Impact of micro-habitat fragmentation on microbial population growth dynamics Hydrocarbon metabolism and petroleum seepage as ecological and evolutionary drivers for Cycloclasticus Weak selection for resistance to quorum sensing inhibition during multiple host infection cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1