Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-23 DOI:10.1002/anie.202417660
Huilin Xie, Kaibin Zhong, Shihao Niu, Xiaoxu Li, Zexu Hu, Guang Xiao, Yifu Huang, Hongjie Zhang, Yuan Liu, Hefeng Zhang, Qiuquan Cai
{"title":"Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol","authors":"Huilin Xie, Kaibin Zhong, Shihao Niu, Xiaoxu Li, Zexu Hu, Guang Xiao, Yifu Huang, Hongjie Zhang, Yuan Liu, Hefeng Zhang, Qiuquan Cai","doi":"10.1002/anie.202417660","DOIUrl":null,"url":null,"abstract":"Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"53 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Tailoring the Reprocessability of Thiol‐Ene Networks through Ring Size effects Constraining CO2 Coverage on Copper Promotes CO2 Electroreduction to Multi‐carbon Products in Strong Acid Engineering Modular Peptide Nanoparticles for Ferroptosis‐Enhanced Tumor Immunotherapy Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu Achieving over 20% Efficiency in Laminated HTM-Free Carbon Electrode Perovskite Solar Cells through In Situ Interface Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1