{"title":"Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol","authors":"Huilin Xie, Kaibin Zhong, Shihao Niu, Xiaoxu Li, Zexu Hu, Guang Xiao, Yifu Huang, Hongjie Zhang, Yuan Liu, Hefeng Zhang, Qiuquan Cai","doi":"10.1002/anie.202417660","DOIUrl":null,"url":null,"abstract":"Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"53 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.