{"title":"Optimized Adsorption of Had and OHad over Amorphous SrRuPtOxHy Nanobelts towards Efficient Alkaline Fuel Cell Catalysis","authors":"Siyu Liu, Shangheng Liu, Jingliang Bao, Zhongliang Huang, Licheng Wei, Nanjun Chen, Zhiwei Hu, Wei-Hsiang Huang, Chih-Wen Pao, Qingyu Kong, Jiajia Han, Leigang Li, Xiaoqing Huang","doi":"10.1002/anie.202421013","DOIUrl":null,"url":null,"abstract":"PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs have optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure. Consequently, a-SrRuPtOxHy NBs displays superior HOR performance with a mass activity of 7.3 A/mgPt+Ru, 23 and 5 times of that of SrRuPt(OH)x NBs and commercial PtRu/C, respectively, and long-lasting stability. Besides, a peak power density of 750 mW/cm2 and a specific power of 14.8 W/mgPt+Ru have been achieved for a-SrRuPtOxHy NBs at a low loading of 0.05 mgPt+Ru/cm2, surpassing many reported HOR catalysts. Mechanism investigation indicates that Pt and Ru are present in oxide/hydroxide forms and H in a-SrRuPtOxHy NBs participates in HOR. Ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations show that there are three catalytic mechanisms participating in a-SrRuPtOxHy NBs, which all exhibit low catalytic barrier and highly improved HOR efficiency. This work provids a new strategy for designing high-performance catalysts towards fuel cells.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs have optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure. Consequently, a-SrRuPtOxHy NBs displays superior HOR performance with a mass activity of 7.3 A/mgPt+Ru, 23 and 5 times of that of SrRuPt(OH)x NBs and commercial PtRu/C, respectively, and long-lasting stability. Besides, a peak power density of 750 mW/cm2 and a specific power of 14.8 W/mgPt+Ru have been achieved for a-SrRuPtOxHy NBs at a low loading of 0.05 mgPt+Ru/cm2, surpassing many reported HOR catalysts. Mechanism investigation indicates that Pt and Ru are present in oxide/hydroxide forms and H in a-SrRuPtOxHy NBs participates in HOR. Ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations show that there are three catalytic mechanisms participating in a-SrRuPtOxHy NBs, which all exhibit low catalytic barrier and highly improved HOR efficiency. This work provids a new strategy for designing high-performance catalysts towards fuel cells.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.