Guohua Gou, Han Li, Xuanhao Wang, Hao Zhang, Wei Yang, Haigang Sui
{"title":"Unsupervised deep depth completion with heterogeneous LiDAR and RGB-D camera depth information","authors":"Guohua Gou, Han Li, Xuanhao Wang, Hao Zhang, Wei Yang, Haigang Sui","doi":"10.1016/j.jag.2024.104327","DOIUrl":null,"url":null,"abstract":"In this work, a depth-only completion method designed to enhance perception in light-deprived environments. We achieve this through LidarDepthNet, a novel end-to-end unsupervised learning framework that fuses heterogeneous depth information captured by two distinct depth sensors: LiDAR and RGB-D cameras. This represents the first unsupervised LiDAR-depth fusion framework for depth completion, demonstrating scalability to diverse real-world subterranean and enclosed environments. To facilitate unsupervised learning, we leverage relative rigid motion transfer (RRMT) to synthesize co-visible depth maps from temporally adjacent frames. This allows us to construct a temporal depth consistency loss, constraining the fused depth to adhere to realistic metric scale. Furthermore, we introduce measurement confidence into the heterogeneous depth fusion model, further refining the fused depth and promoting synergistic complementation between the two depth modalities. Extensive evaluation on both real-world and synthetic datasets, notably a newly proposed LiDAR-depth fusion dataset, LidarDepthSet, demonstrates the significant advantages of our method compared to existing state-of-the-art approaches.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"20 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104327","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a depth-only completion method designed to enhance perception in light-deprived environments. We achieve this through LidarDepthNet, a novel end-to-end unsupervised learning framework that fuses heterogeneous depth information captured by two distinct depth sensors: LiDAR and RGB-D cameras. This represents the first unsupervised LiDAR-depth fusion framework for depth completion, demonstrating scalability to diverse real-world subterranean and enclosed environments. To facilitate unsupervised learning, we leverage relative rigid motion transfer (RRMT) to synthesize co-visible depth maps from temporally adjacent frames. This allows us to construct a temporal depth consistency loss, constraining the fused depth to adhere to realistic metric scale. Furthermore, we introduce measurement confidence into the heterogeneous depth fusion model, further refining the fused depth and promoting synergistic complementation between the two depth modalities. Extensive evaluation on both real-world and synthetic datasets, notably a newly proposed LiDAR-depth fusion dataset, LidarDepthSet, demonstrates the significant advantages of our method compared to existing state-of-the-art approaches.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.