Plant Phenology Index leveraging over conventional vegetation indices to establish a new remote sensing benchmark of GPP for northern ecosystems

Hanna Marsh, Hongxiao Jin, Zheng Duan, Jutta Holst, Lars Eklundh, Wenxin Zhang
{"title":"Plant Phenology Index leveraging over conventional vegetation indices to establish a new remote sensing benchmark of GPP for northern ecosystems","authors":"Hanna Marsh,&nbsp;Hongxiao Jin,&nbsp;Zheng Duan,&nbsp;Jutta Holst,&nbsp;Lars Eklundh,&nbsp;Wenxin Zhang","doi":"10.1016/j.jag.2024.104289","DOIUrl":null,"url":null,"abstract":"<div><div>Northern ecosystems, encompassing boreal forests, tundra, and permafrost areas, are increasingly affected by the amplified impacts of climate change. These ecosystems play a crucial role in determining the global carbon budget. To improve our understanding of carbon uptake in these regions, we evaluate the effectiveness of employing the physically-based Plant Phenology Index (PPI) to estimate gross primary productivity across ten different ecosystems. Based on eddy-covariance measurements from 65 sites, the vegetation index (VI)-driven GPP models (six different algorithms) are calibrated and validated. Our findings highlight that the Michaelis–Menten algorithm has the best performance and PPI is superior to the other five VIs, including NDVI, NIRv, EVI-2, NDPI, and NDGI, at predicting gross primary productivity (GPP) rates on a weekly scale (with an average R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.64 and RMSE of 1.70 g C m<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> d<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>), regardless of short-term environmental constraints on photosynthesis. Through our scaled-up analysis, we estimate the annual GPP of the vast 37 million km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> study region to be around 22 Pg C yr<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, aligning with other recently developed products such as GOSIF-GPP, FluxSat-GPP, and FLUXCOM-X GPP. Derived from a climate-independent approach, the PPI-GPP product offers distinct advantages in exploring relationships between climate variables and terrestrial ecosystem productivity and phenology. Furthermore, this product holds significant value for assessing forestry and agricultural production in northern regions and for benchmarking terrestrial biosphere models and Earth system models.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104289"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Northern ecosystems, encompassing boreal forests, tundra, and permafrost areas, are increasingly affected by the amplified impacts of climate change. These ecosystems play a crucial role in determining the global carbon budget. To improve our understanding of carbon uptake in these regions, we evaluate the effectiveness of employing the physically-based Plant Phenology Index (PPI) to estimate gross primary productivity across ten different ecosystems. Based on eddy-covariance measurements from 65 sites, the vegetation index (VI)-driven GPP models (six different algorithms) are calibrated and validated. Our findings highlight that the Michaelis–Menten algorithm has the best performance and PPI is superior to the other five VIs, including NDVI, NIRv, EVI-2, NDPI, and NDGI, at predicting gross primary productivity (GPP) rates on a weekly scale (with an average R2 of 0.64 and RMSE of 1.70 g C m2 d1), regardless of short-term environmental constraints on photosynthesis. Through our scaled-up analysis, we estimate the annual GPP of the vast 37 million km2 study region to be around 22 Pg C yr1, aligning with other recently developed products such as GOSIF-GPP, FluxSat-GPP, and FLUXCOM-X GPP. Derived from a climate-independent approach, the PPI-GPP product offers distinct advantages in exploring relationships between climate variables and terrestrial ecosystem productivity and phenology. Furthermore, this product holds significant value for assessing forestry and agricultural production in northern regions and for benchmarking terrestrial biosphere models and Earth system models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用植物物候指数取代传统植被指数,建立北方生态系统GPP的新遥感基准
包括北方森林、冻土带和永久冻土区在内的北方生态系统日益受到气候变化放大影响的影响。这些生态系统在决定全球碳收支方面起着至关重要的作用。为了提高我们对这些地区碳吸收的认识,我们评估了使用基于物理的植物物候指数(PPI)来估计10个不同生态系统的总初级生产力的有效性。基于65个站点的涡旋协方差测量,对植被指数驱动的GPP模型(6种不同算法)进行了标定和验证。我们的研究结果强调,Michaelis-Menten算法在预测周尺度的总初级生产力(GPP)率方面表现最好,PPI优于其他5种VIs,包括NDVI、NIRv、EVI-2、NDPI和NDGI(平均R2为0.64,RMSE为1.70 g C m -2 d - 1),而不考虑光合作用的短期环境限制。通过我们的放大分析,我们估计3700万平方公里研究区域的年GPP约为22 Pg C yr - 1,与其他最近开发的产品如GOSIF-GPP, FluxSat-GPP和FLUXCOM-X GPP保持一致。基于与气候无关的方法,PPI-GPP产品在探索气候变量与陆地生态系统生产力和物候之间的关系方面具有明显的优势。此外,该产品对于评估北方地区的林业和农业生产以及陆地生物圈模型和地球系统模型的基准具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Change detection in heterogeneous images based on multiple pseudo-homogeneous image pairs Small but mighty: Enhancing 3D point clouds semantic segmentation with U-Next framework Estimating structure of understory bamboo for giant panda habitat by developing an advanced vertical vegetation classification approach using UAS-LiDAR data Utilization of Sentinel-2 satellite imagery for correlation analysis of shoreline variation and incident waves: Application to Wonpyeong-Chogok Beach, Korea Diffuse attenuation coefficient and bathymetry retrieval in shallow water environments by integrating satellite laser altimetry with optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1