Daifeng Peng , Xuelian Liu , Yongjun Zhang , Haiyan Guan , Yansheng Li , Lorenzo Bruzzone
{"title":"Deep learning change detection techniques for optical remote sensing imagery: Status, perspectives and challenges","authors":"Daifeng Peng , Xuelian Liu , Yongjun Zhang , Haiyan Guan , Yansheng Li , Lorenzo Bruzzone","doi":"10.1016/j.jag.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>Change detection (CD) aims to compare and analyze images of identical geographic areas but different dates, whereby revealing spatio-temporal change patterns of Earth’s surface. With the implementation of the High-Resolution Earth Observation Project, an integrated sky-to-ground observation system has been continuously developed and improved. The accumulation of massive multi-modal, multi-angle, and multi-resolution remote sensing data have greatly enriched the CD data sources. Among them, high-resolution optical remote sensing images contain abundant spatial detail information, making it possible to interpret fine-grained scenes and greatly expand the application breadth and depth of CD. Generally, traditional optical remote sensing CD methods are cumbersome in steps and have a low level of automation. In contrast, artificial intelligence (AI) based CD methods possess powerful feature extraction and non-linear modeling capabilities, thereby gaining advantages that traditional methods cannot match. As a result, they have become the mainstream approaches in the field of CD. This review article systematically summarizes the datasets, theories, and methods of CD for optical remote sensing image. It provides a comprehensive analysis of AI-based CD algorithms based on deep learning paradigms from the perspectives of algorithm granularity. In-depth analysis of the performance of typical algorithms are further conducted. Finally, we summarize the challenges and trends of the CD algorithms in the AI era, aiming to provide important guidelines and insights for relevant researchers.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104282"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Change detection (CD) aims to compare and analyze images of identical geographic areas but different dates, whereby revealing spatio-temporal change patterns of Earth’s surface. With the implementation of the High-Resolution Earth Observation Project, an integrated sky-to-ground observation system has been continuously developed and improved. The accumulation of massive multi-modal, multi-angle, and multi-resolution remote sensing data have greatly enriched the CD data sources. Among them, high-resolution optical remote sensing images contain abundant spatial detail information, making it possible to interpret fine-grained scenes and greatly expand the application breadth and depth of CD. Generally, traditional optical remote sensing CD methods are cumbersome in steps and have a low level of automation. In contrast, artificial intelligence (AI) based CD methods possess powerful feature extraction and non-linear modeling capabilities, thereby gaining advantages that traditional methods cannot match. As a result, they have become the mainstream approaches in the field of CD. This review article systematically summarizes the datasets, theories, and methods of CD for optical remote sensing image. It provides a comprehensive analysis of AI-based CD algorithms based on deep learning paradigms from the perspectives of algorithm granularity. In-depth analysis of the performance of typical algorithms are further conducted. Finally, we summarize the challenges and trends of the CD algorithms in the AI era, aiming to provide important guidelines and insights for relevant researchers.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.