Quantifying indoor navigation map information considering the dynamic map elements for scale adaptation

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences International Journal of Applied Earth Observation and Geoinformation Pub Date : 2024-12-18 DOI:10.1016/j.jag.2024.104323
Jingyi Zhou, Jie Shen, Cheng Fu, Robert Weibel, Zhiyong Zhou
{"title":"Quantifying indoor navigation map information considering the dynamic map elements for scale adaptation","authors":"Jingyi Zhou, Jie Shen, Cheng Fu, Robert Weibel, Zhiyong Zhou","doi":"10.1016/j.jag.2024.104323","DOIUrl":null,"url":null,"abstract":"The indoor map is an indispensable component to visualize human users’ real-time locations and guided routes to find their destinations in large and complex buildings efficiently. The map design in existing mobile indoor navigation systems mostly considers either the user locations or the route segments but seldom considers the adaptation of the base map scale. Due to uneven densities of spatial elements, the complexity of routes, and the diversity of spatial distribution of navigation decision points, the base map information of indoor navigation maps varies greatly. Hence, it is inevitable to cause an inappropriate amount of map information at different locations and routes. Additionally, existing multi-scale representations of indoor maps are limited to certain scales but not adapted to building locations. Users have to adjust the map scales frequently through multiple interactions with the navigation system. In this study, we propose a method that considers the dynamic elements of indoor maps to quantify the map information for scale adaptation. The indoor navigation map information calculation includes both geometry information and spatial distribution information of static base map elements (area elements, POIs) and dynamic route elements (segments, decision points). The total map information is quantified by setting the weights of the two types of elements. An empirical study on indoor navigation map selection was conducted. Results show that the quantified map information using the proposed method can reflect a user-desired map better than the traditionally used scales.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"85 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104323","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The indoor map is an indispensable component to visualize human users’ real-time locations and guided routes to find their destinations in large and complex buildings efficiently. The map design in existing mobile indoor navigation systems mostly considers either the user locations or the route segments but seldom considers the adaptation of the base map scale. Due to uneven densities of spatial elements, the complexity of routes, and the diversity of spatial distribution of navigation decision points, the base map information of indoor navigation maps varies greatly. Hence, it is inevitable to cause an inappropriate amount of map information at different locations and routes. Additionally, existing multi-scale representations of indoor maps are limited to certain scales but not adapted to building locations. Users have to adjust the map scales frequently through multiple interactions with the navigation system. In this study, we propose a method that considers the dynamic elements of indoor maps to quantify the map information for scale adaptation. The indoor navigation map information calculation includes both geometry information and spatial distribution information of static base map elements (area elements, POIs) and dynamic route elements (segments, decision points). The total map information is quantified by setting the weights of the two types of elements. An empirical study on indoor navigation map selection was conducted. Results show that the quantified map information using the proposed method can reflect a user-desired map better than the traditionally used scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑动态地图元素的室内导航地图信息量化比例尺适应
在大型复杂的建筑物中,室内地图是可视化人类用户实时位置和引导路线的重要组成部分,可以有效地找到他们的目的地。现有移动室内导航系统的地图设计多考虑用户位置或路线段,很少考虑基图比例尺的自适应。由于空间要素密度的不均匀性、路线的复杂性以及导航决策点空间分布的多样性,室内导航地图的底图信息差异很大。因此,不可避免地会在不同的位置和路线上造成不适当的地图信息。此外,现有的室内地图的多比例尺表示仅限于某些比例尺,而不适合建筑位置。用户必须通过与导航系统的多次交互频繁地调整地图比例尺。在本研究中,我们提出了一种考虑室内地图动态元素的方法来量化地图信息以进行比例尺适应。室内导航地图信息计算包括静态底图元素(面积元素、点)和动态路线元素(路段、决策点)的几何信息和空间分布信息。通过设置两类元素的权重来量化总的地图信息。对室内导航地图的选择进行了实证研究。结果表明,与传统的比例尺相比,该方法能更好地反映用户期望的地图信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Modeling the impact of pandemic on the urban thermal environment over megacities in China: Spatiotemporal analysis from the perspective of heat anomaly variations BSG-WSL: BackScatter-guided weakly supervised learning for water mapping in SAR images Identification of standing dead trees in Robinia pseudoacacia plantations across China’s Loess Plateau using multiple deep learning models Detecting glacial lake water quality indicators from RGB surveillance images via deep learning Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1