{"title":"Chitosan as a fluorescent probe for the detection of the AIE-active food colorant quinoline yellow.","authors":"Yuan Gu, Jianwei Wu, Bingyong Lin, Yueliang Wang, Yuanyuan Yao, Lifen Chen, Jianguo Xu, Longhua Guo","doi":"10.1039/d4ay02087a","DOIUrl":null,"url":null,"abstract":"<p><p>The greenish-yellow synthetic dye quinoline yellow (Qy) is widely used in the food and pharmaceutical industries. However, this dye may lead to health and environmental problems. Therefore, investigating how Qy interacts with biological macromolecules is of great interest. In this work, Qy was found to be a novel AIEgen having strong solid-state emission and water-solubility. Adding tetrahydrofuran to an aqueous solution of Qy induced Qy to form nanoaggregates, which increased its fluorescence intensity. Moreover, we found that Qy was able to interact with typical biological macromolecules, such as chitosan, BSA, and DNA, and quench these biomolecules' intrinsic fluorescence. Therefore, chitosan was chosen as a probe for Qy detection. The results showed that chitosan could detect Qy in the presence of interfering ions, other dyes, and sucrose, as well as in an acidic environment. Finally, chitosan was used to determine the quantity of Qy in orange juice and wine. This is the first report of the identification of a food colorant as an AIEgen, and this AIE activity has been wisely harnessed to visualize molecular interactions between Qy and biological macromolecules, as well as to detect Qy in beverages.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02087a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The greenish-yellow synthetic dye quinoline yellow (Qy) is widely used in the food and pharmaceutical industries. However, this dye may lead to health and environmental problems. Therefore, investigating how Qy interacts with biological macromolecules is of great interest. In this work, Qy was found to be a novel AIEgen having strong solid-state emission and water-solubility. Adding tetrahydrofuran to an aqueous solution of Qy induced Qy to form nanoaggregates, which increased its fluorescence intensity. Moreover, we found that Qy was able to interact with typical biological macromolecules, such as chitosan, BSA, and DNA, and quench these biomolecules' intrinsic fluorescence. Therefore, chitosan was chosen as a probe for Qy detection. The results showed that chitosan could detect Qy in the presence of interfering ions, other dyes, and sucrose, as well as in an acidic environment. Finally, chitosan was used to determine the quantity of Qy in orange juice and wine. This is the first report of the identification of a food colorant as an AIEgen, and this AIE activity has been wisely harnessed to visualize molecular interactions between Qy and biological macromolecules, as well as to detect Qy in beverages.