Iodide Enhances the Production of Pseurotin D over Pseurotin A by Inverting the Preference for the SN2 versus the SN2' Product in the Final Nonenzymatic Step.
Yukyung Choi, Yeongseo Kim, Jin Wook Cha, Gyu Sung Lee, Huong T Pham, Men Thi Ngo, Saegun Kim, Chung Sub Kim, Kyo Bin Kang
{"title":"Iodide Enhances the Production of Pseurotin D over Pseurotin A by Inverting the Preference for the S<sub>N</sub>2 versus the S<sub>N</sub>2' Product in the Final Nonenzymatic Step.","authors":"Yukyung Choi, Yeongseo Kim, Jin Wook Cha, Gyu Sung Lee, Huong T Pham, Men Thi Ngo, Saegun Kim, Chung Sub Kim, Kyo Bin Kang","doi":"10.1021/acs.jnatprod.4c01128","DOIUrl":null,"url":null,"abstract":"<p><p>Nonenzymatic reactions, though critical in natural product biosynthesis, are significantly challenging to control. Adding 3% NaI to the culture medium of <i>Penicillium janczewskii</i> significantly increased pseurotin D (<b>1</b>) production and decreased pseurotin A (<b>2</b>) production. Previously, <b>1</b> and <b>2</b> were suggested to be produced via a nonenzymatic reaction, where the epoxide at C-10 undergoes S<sub>N</sub>2 (<b>2</b>) or S<sub>N</sub>2' (<b>1</b>) reactions. We confirmed that <b>1</b> was isolated as a 1:1 mixture of C-13 epimers by spectral elucidation via CP3 analysis aided by selective excitation NMR methods, which supported that <b>1</b> was produced through a nonenzymatic S<sub>N</sub>2' reaction. We propose that NaI increased the ratio of <b>1</b> by causing steric hindrance at the C-11 position of the transient intermediate, which makes C-13 more preferred in the S<sub>N</sub>2/S<sub>N</sub>2' competition.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01128","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nonenzymatic reactions, though critical in natural product biosynthesis, are significantly challenging to control. Adding 3% NaI to the culture medium of Penicillium janczewskii significantly increased pseurotin D (1) production and decreased pseurotin A (2) production. Previously, 1 and 2 were suggested to be produced via a nonenzymatic reaction, where the epoxide at C-10 undergoes SN2 (2) or SN2' (1) reactions. We confirmed that 1 was isolated as a 1:1 mixture of C-13 epimers by spectral elucidation via CP3 analysis aided by selective excitation NMR methods, which supported that 1 was produced through a nonenzymatic SN2' reaction. We propose that NaI increased the ratio of 1 by causing steric hindrance at the C-11 position of the transient intermediate, which makes C-13 more preferred in the SN2/SN2' competition.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.