Abdallah Kamal, Baosong Li, Abdullah Solayman, Shaohong Luo, Ian Kinloch, Lianxi Zheng, Kin Liao
{"title":"Mechanical properties of two-dimensional material-based thin films: a comprehensive review.","authors":"Abdallah Kamal, Baosong Li, Abdullah Solayman, Shaohong Luo, Ian Kinloch, Lianxi Zheng, Kin Liao","doi":"10.1039/d4nh00425f","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials are materials with a thickness of one or a few atoms with intriguing electrical, chemical, optical, electrochemical, and mechanical properties. Therefore, they are deemed candidates for ubiquitous engineering applications. Films and three-dimensional (3D) structures made from 2D materials introduce a distinct assembly structure that imparts the inherent properties of pristine 2D materials on a macroscopic scale. Acquiring the adequate strength and toughness of 2D material structures is of great interest due to their high demand for numerous industrial applications. This work presents a comprehensive review of the mechanical properties and deformation behavior of robust films composed of 2D materials that help them to attain other extraordinary properties. Moreover, the various key factors affecting the mechanical performance of such thin films, such as the lateral size of nanoflakes, fabrication technique of the film, thickness of the film, post-processing, and strain rate, are elucidated.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00425f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials are materials with a thickness of one or a few atoms with intriguing electrical, chemical, optical, electrochemical, and mechanical properties. Therefore, they are deemed candidates for ubiquitous engineering applications. Films and three-dimensional (3D) structures made from 2D materials introduce a distinct assembly structure that imparts the inherent properties of pristine 2D materials on a macroscopic scale. Acquiring the adequate strength and toughness of 2D material structures is of great interest due to their high demand for numerous industrial applications. This work presents a comprehensive review of the mechanical properties and deformation behavior of robust films composed of 2D materials that help them to attain other extraordinary properties. Moreover, the various key factors affecting the mechanical performance of such thin films, such as the lateral size of nanoflakes, fabrication technique of the film, thickness of the film, post-processing, and strain rate, are elucidated.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.