Molecular Customization of Anode-Electrolyte Interfaces for Enhanced Stability and Reversibility in Aqueous Zinc-Carbon Capacitors

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-23 DOI:10.1002/anie.202424255
Yang Xu, Jingzhu Chen, Tao Li, Hexian Ma, Zhuoran Lv, Shicong Zhang, Hui Bi, Fuqiang Huang, Tianquan Lin
{"title":"Molecular Customization of Anode-Electrolyte Interfaces for Enhanced Stability and Reversibility in Aqueous Zinc-Carbon Capacitors","authors":"Yang Xu,&nbsp;Jingzhu Chen,&nbsp;Tao Li,&nbsp;Hexian Ma,&nbsp;Zhuoran Lv,&nbsp;Shicong Zhang,&nbsp;Hui Bi,&nbsp;Fuqiang Huang,&nbsp;Tianquan Lin","doi":"10.1002/anie.202424255","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-carbon capacitors display application potential in green power and high-end equipment owing to their high security, large power and sustainability. The water-rich zinc anode-electrolyte interface (AEI) and disordered zinc-ion diffusion are the culprits triggering corrosion reactions and dendrite growth, threatening the sustainability of aqueous zinc-carbon capacitors. Herein, a polyfunctional biomolecular, vitamin B<sub>6</sub>, is introduced into the traditional aqueous electrolyte for customizing the functional AEI and fine-regulating the interfacial coordination environment of zinc ions. Specifically, the preferential anchoring of pyridine nitrogen enables trace vitamin (2.0 g L<sup>−1</sup>) to construct a robust AEI and suppress corrosion reactions. The hydroxyl function zone provides high-octane guidance for zinc-ion diffusion at the AEI, resulting in flat zinc (002) oriented growth. Consequently, the Zn//Zn symmetrical cell features an ultrahigh cumulative capacity of 4.0 Ah cm<sup>−2</sup> under 34 % depth of discharge. The vitamin-optimized zinc-carbon capacitor features extended operational lifetimes exceeding 8 months (200 thousand cycles at 5.0 A g<sup>−1</sup>), and demonstrates a high areal capacity of averaging 0.68 mAh cm<sup>−2</sup> and exceptional durability over 2000 hours at 1.0 A g<sup>−1</sup> under a high discharge depth of zinc anode (averaging 11.6 %). This work offers valuable insights into sustainable and cost-effective zinc-carbon capacitors.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 12","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-carbon capacitors display application potential in green power and high-end equipment owing to their high security, large power and sustainability. The water-rich zinc anode-electrolyte interface (AEI) and disordered zinc-ion diffusion are the culprits triggering corrosion reactions and dendrite growth, threatening the sustainability of aqueous zinc-carbon capacitors. Herein, a polyfunctional biomolecular, vitamin B6, is introduced into the traditional aqueous electrolyte for customizing the functional AEI and fine-regulating the interfacial coordination environment of zinc ions. Specifically, the preferential anchoring of pyridine nitrogen enables trace vitamin (2.0 g L−1) to construct a robust AEI and suppress corrosion reactions. The hydroxyl function zone provides high-octane guidance for zinc-ion diffusion at the AEI, resulting in flat zinc (002) oriented growth. Consequently, the Zn//Zn symmetrical cell features an ultrahigh cumulative capacity of 4.0 Ah cm−2 under 34 % depth of discharge. The vitamin-optimized zinc-carbon capacitor features extended operational lifetimes exceeding 8 months (200 thousand cycles at 5.0 A g−1), and demonstrates a high areal capacity of averaging 0.68 mAh cm−2 and exceptional durability over 2000 hours at 1.0 A g−1 under a high discharge depth of zinc anode (averaging 11.6 %). This work offers valuable insights into sustainable and cost-effective zinc-carbon capacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高锌碳电容器稳定性和可逆性的阳极-电解质界面的分子定制。
锌碳水电容器具有安全性高、功率大、可持续性好等优点,在绿色电力和高端设备中显示出巨大的应用潜力。富水锌阳极-电解质界面(AEI)和锌离子无序扩散是引发腐蚀反应和枝晶生长的罪魁祸首,威胁着含水锌-碳电容器的可持续性。本研究将维生素B6这一多功能生物分子引入到传统的水电解质中,以定制功能性AEI,精细调节锌离子的界面配位环境。具体来说,吡啶氮的优先锚定使微量维生素(2.0 g L-1)能够构建强大的AEI并抑制腐蚀反应。羟基功能区为锌离子在AEI处的扩散提供了高辛烷值的引导,导致扁平的锌(002)取向生长。因此,在34%的放电深度下,锌/锌对称电池具有4.0 Ah cm-2的超高累积容量。维生素优化的锌碳电容器具有超过8个月的使用寿命(5.0 A g-1下20万次循环),并且在1.0 A g-1下具有平均0.68 mAh cm-2的高面积容量,在高锌阳极放电深度(平均11.6%)下具有超过2000小时的优异耐用性。这项工作为可持续和具有成本效益的锌碳电容器提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synergistic Action of Crystallophore and Imaging-Crystallophore Enhances the Production and Imaging of Protein Crystals Regulation of the D-Band Center Through Ligand Engineering in Silver Cluster-Based MOFs Enhances Acidic CO2 Electroreduction Ionomer-Driven Reaction Microenvironment Control in Bicarbonate-Mediated Integrated CO2 Capture and Electrolysis Selective Singlet Oxygen Generation over a Silver–Porphyrin Single-Atom-Site Catalyst for Ultrafast Sulfide Photooxidation Thiourea-Functionalized Ionizable Lipids Enable Systemic mRNA Delivery to Secondary Lymphoid Organs and Dual-Modal Lymphatic Metastasis Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1