Thi My Cam Tran, The Anh Quang, Lalitha Gnanasekaran, Tejraj Malleshappa Aminabhavi, Yasser Vasseghian, Sang-Woo Joo
{"title":"Co3O4-RuO2/Ti3C2Tx MXene Electrocatalysts for Oxygen Evolution Reaction in Acidic and Alkaline Media.","authors":"Thi My Cam Tran, The Anh Quang, Lalitha Gnanasekaran, Tejraj Malleshappa Aminabhavi, Yasser Vasseghian, Sang-Woo Joo","doi":"10.1002/cssc.202402270","DOIUrl":null,"url":null,"abstract":"<p><p>MXene 2D materials and non-noble transition metal oxide nanoparticles have been proposed as novel pH-universal platforms for oxygen evolution reaction (OER), owing to the enhancement of active site exposures and conductivity. Herein, Co3O4-RuO2 /Ti3C2Tx/carbon cloths (CRMC) were assembled in a facile way as an efficient OER platform through a hydrothermal process. The Co3O4-RuO2/Ti3C2Tx demonstrated prominent OER catalytic performance under acidic and alkaline conditions, which showed overpotential values of 195 and 247 mV at 10 mA cm-2 with Tafel slopes of 93 and 97 mVdec-1, respectively. The experimental results demonstrated that the electron transfer from Co3O4-RuO2 to Ti3C2Tx/carbon cloth played a remarkable role in promoting OER catalytic activity. Further OER characterization indicated that the enhanced multi-electron reaction kinetics are attributed to Co and Ru acting as the primary active places for O2 adsorption and activation, which facilitated the generation of *OOH intermediate.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402270"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402270","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MXene 2D materials and non-noble transition metal oxide nanoparticles have been proposed as novel pH-universal platforms for oxygen evolution reaction (OER), owing to the enhancement of active site exposures and conductivity. Herein, Co3O4-RuO2 /Ti3C2Tx/carbon cloths (CRMC) were assembled in a facile way as an efficient OER platform through a hydrothermal process. The Co3O4-RuO2/Ti3C2Tx demonstrated prominent OER catalytic performance under acidic and alkaline conditions, which showed overpotential values of 195 and 247 mV at 10 mA cm-2 with Tafel slopes of 93 and 97 mVdec-1, respectively. The experimental results demonstrated that the electron transfer from Co3O4-RuO2 to Ti3C2Tx/carbon cloth played a remarkable role in promoting OER catalytic activity. Further OER characterization indicated that the enhanced multi-electron reaction kinetics are attributed to Co and Ru acting as the primary active places for O2 adsorption and activation, which facilitated the generation of *OOH intermediate.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology