EARTH-ABUNDANT 3d-TRANSITION METAL METASILICATES AS EFFECTIVE ELECTROCATALYSTS FOR ALKALINE HER: CuZnSiO3 OUTPERFORMS CuSiO3 AND ZnSiO3.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-23 DOI:10.1002/cssc.202402043
Trupti Ghogare, Indrajit Patil, Mujaffar Hossain, Richa Bobade, Sukanata Mondal, Su Varma, Bidisa Das, Satishchandra Ogale
{"title":"EARTH-ABUNDANT 3d-TRANSITION METAL METASILICATES AS EFFECTIVE ELECTROCATALYSTS FOR ALKALINE HER: CuZnSiO3 OUTPERFORMS CuSiO3 AND ZnSiO3.","authors":"Trupti Ghogare, Indrajit Patil, Mujaffar Hossain, Richa Bobade, Sukanata Mondal, Su Varma, Bidisa Das, Satishchandra Ogale","doi":"10.1002/cssc.202402043","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature. The structural and morphological studies their unique crystal structure and distinctive morphology, as well as the surface texture, with the band gap ranges 1.49-2.24 eV. Interestingly, CuZnSiO3, with all earth-abundant elements, exhibits a band gap of 1.67 eV, shows impressive electrocatalytic properties. We show that CuZnSiO3 exhibits HER activity with much lower overpotential (h = 151 mV) at 10 mA cm-2 under alkaline conditions. The CuZnSiO3 electrode also shows good electrocatalytic stability (ΔE = 24 mV) even after 25 hours of chronoamperometric stability test and the performance is comparable to the commercial Pt/C catalyst under similar conditions. Finally, detailed electronic structure studies employing density functional theory (DFT) as well as electronic transport studies were performed to understand and elucidate the superior performance of CuZnSiO3 over the CuSiO3 and ZnSiO3 electrocatalysts.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402043"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402043","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature. The structural and morphological studies their unique crystal structure and distinctive morphology, as well as the surface texture, with the band gap ranges 1.49-2.24 eV. Interestingly, CuZnSiO3, with all earth-abundant elements, exhibits a band gap of 1.67 eV, shows impressive electrocatalytic properties. We show that CuZnSiO3 exhibits HER activity with much lower overpotential (h = 151 mV) at 10 mA cm-2 under alkaline conditions. The CuZnSiO3 electrode also shows good electrocatalytic stability (ΔE = 24 mV) even after 25 hours of chronoamperometric stability test and the performance is comparable to the commercial Pt/C catalyst under similar conditions. Finally, detailed electronic structure studies employing density functional theory (DFT) as well as electronic transport studies were performed to understand and elucidate the superior performance of CuZnSiO3 over the CuSiO3 and ZnSiO3 electrocatalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Simultaneous Coproduction of Xylonic Acid and Xylitol: Leveraging In Situ Hydrogen Generation and Utilization from Xylose. Water-Soluble Iron Porphyrins as Catalysts for Suppressing Chlorinated Disinfection Byproducts in Hypochlorite-Dependent Water Remediation. Deep Eutectic Solvents as Electrolytes for Zn Batteries: Between Blocked Crystallization, Electrochemical Performance and Corrosion Issues. Stabilizing Polyoxometalate for Enhanced OER Performance Using a Porous Manganese Oxide Support. Butyl Acrylate/2-Methylene-1,3-Dioxepane/Vinyl Acetate Emulsion Terpolymerization: Incorporating Backbone Degradable Linkages into Adhesive Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1