Rui Gao, Jiaxin Yin, Ruonan Liu, Yang Liu, Jiaxuan Li, Lei Dong, Weiguang Ma, Lei Zhang, Peihua Zhang, Zhihui Tian, Yang Zhao, Wangbao Yin, Suotang Jia
{"title":"A novel particle size distribution correction method based on image processing and deep learning for coal quality analysis using NIRS-XRF.","authors":"Rui Gao, Jiaxin Yin, Ruonan Liu, Yang Liu, Jiaxuan Li, Lei Dong, Weiguang Ma, Lei Zhang, Peihua Zhang, Zhihui Tian, Yang Zhao, Wangbao Yin, Suotang Jia","doi":"10.1016/j.talanta.2024.127427","DOIUrl":null,"url":null,"abstract":"<p><p>The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning. The method first captures micro-images of the coal sample surface using a microscope camera and employs the Segment Anything Model (SAM) for binarization to represent particle size distribution. Subsequently, a Spatial Transformer Network (STN) is applied for geometric correction, followed by feature extraction using a Convolutional Neural Network (CNN) to establish a correlation model between particle size distribution and ash measurement errors. In experiments involving 56 coal samples, including 48 at 0.2 mm for the standard ash prediction model and 8 within a 0∼1 mm range for correction, the results showed significant improvements: standard deviation (SD), mean absolute error (MAE), and root mean square error of prediction (RMSEP) decreased from 0.321%, 0.317%, and 0.335% to 0.229%, 0.225%, and 0.257%, respectively. Using the accuracy of the 0.2 mm particle size validation set as a reference, compared to before correction, the errors in these metrics were reduced by 64.06%, 50%, and 60.80%, respectively. This study demonstrates that integrating deep learning and image analysis significantly enhances the repeatability and accuracy of NIRS-XRF measurements, effectively mitigating sub-millimeter particle size effects on spectral detection results and improving model adaptability. This method, through automated particle size distribution analysis and real-time result correction, holds promise for providing essential technical support for the development of online quality detection technologies for conveyor belt materials.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127427"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127427","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning. The method first captures micro-images of the coal sample surface using a microscope camera and employs the Segment Anything Model (SAM) for binarization to represent particle size distribution. Subsequently, a Spatial Transformer Network (STN) is applied for geometric correction, followed by feature extraction using a Convolutional Neural Network (CNN) to establish a correlation model between particle size distribution and ash measurement errors. In experiments involving 56 coal samples, including 48 at 0.2 mm for the standard ash prediction model and 8 within a 0∼1 mm range for correction, the results showed significant improvements: standard deviation (SD), mean absolute error (MAE), and root mean square error of prediction (RMSEP) decreased from 0.321%, 0.317%, and 0.335% to 0.229%, 0.225%, and 0.257%, respectively. Using the accuracy of the 0.2 mm particle size validation set as a reference, compared to before correction, the errors in these metrics were reduced by 64.06%, 50%, and 60.80%, respectively. This study demonstrates that integrating deep learning and image analysis significantly enhances the repeatability and accuracy of NIRS-XRF measurements, effectively mitigating sub-millimeter particle size effects on spectral detection results and improving model adaptability. This method, through automated particle size distribution analysis and real-time result correction, holds promise for providing essential technical support for the development of online quality detection technologies for conveyor belt materials.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.