Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-04-01 Epub Date: 2024-12-21 DOI:10.1016/j.talanta.2024.127422
Huabin Cai, Runhao Yuan, Shaokun Huang, Yanling Huang, Cuiying Lin, Yue Lin, Fang Luo, Zhenyu Lin, Lixin Wang
{"title":"Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel.","authors":"Huabin Cai, Runhao Yuan, Shaokun Huang, Yanling Huang, Cuiying Lin, Yue Lin, Fang Luo, Zhenyu Lin, Lixin Wang","doi":"10.1016/j.talanta.2024.127422","DOIUrl":null,"url":null,"abstract":"<p><p>Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127422"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灵敏胰蛋白酶传感器基于微尺度离子电流的调节,通过选择性水解填充在微通道中的水凝胶进行整流。
带负电荷的水凝胶填充在微通道中可以表现出微囊离子电流整流(ICR)行为,这是由于水凝胶的空间负电荷和结构不对称所致。本研究首次将这一特性应用于胰蛋白酶传感器的研制。首先在微通道顶端填充由牛血清白蛋白(BSA)和乙二醛(BSAG)合成的水凝胶。随后,将填充BSAG水凝胶的微通道浸入胰蛋白酶溶液中水解BSAG水凝胶中的BSA。该过程改变了BSAG水凝胶填充微通道的空间电荷密度和孔径,导致微尺度ICR的变化,可用于定量胰蛋白酶。然后对影响传感性能的关键参数如BSA浓度、电解质强度、pH和反应时间进行了优化。检测范围为10.0 ng/mL ~ 100 μg/mL,检出限低至2.55 ng/mL (S/N = 3)。由于水凝胶独特的三维孔结构和胰蛋白酶对牛血清白蛋白水解的特异性,该传感器具有较高的灵敏度和特异性,同时具有良好的重现性和稳定性。该传感器已被有效地用于测量人类血清样品中的胰蛋白酶水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Corrigendum to 'A novel four-modal nano-sensor based on two-dimensional Mxenes and fully connected artificial neural networks for the highly sensitive and rapid detection of ochratoxin A' [Talanta 283 (2025) 127157]. Detection of uranyl ions by single-hairpin based self-hybridization chain reaction. Dual-signal, one-step simultaneous monitoring of genetic mutation in multiple gene regions using Fe3O4@Au and MOF. A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection. A new near-infrared fluorescence probe for highly selective and sensitive detection and imaging of Butyrylcholinesterase in Alzheimer's disease mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1