Identification of an antibiotic from an HTS targeting EF-Tu:tRNA interaction: a prospective topical treatment for MRSA skin infections.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2024-12-23 DOI:10.1128/aem.02046-24
Wlodek Mandecki, Maxim Chudaev, Wenjuan Ye, Amy Q Wang, Kenneth J Wilson, Xin Xu, Jisun Kim, Dane Parker, David Alland, Pradeep Kumar, Barry Li, Jason H Yang, Barry Kreiswirth, Jose R Mediavilla, Juan J Marugan, Mark J Henderson, Emanuel Goldman
{"title":"Identification of an antibiotic from an HTS targeting EF-Tu:tRNA interaction: a prospective topical treatment for MRSA skin infections.","authors":"Wlodek Mandecki, Maxim Chudaev, Wenjuan Ye, Amy Q Wang, Kenneth J Wilson, Xin Xu, Jisun Kim, Dane Parker, David Alland, Pradeep Kumar, Barry Li, Jason H Yang, Barry Kreiswirth, Jose R Mediavilla, Juan J Marugan, Mark J Henderson, Emanuel Goldman","doi":"10.1128/aem.02046-24","DOIUrl":null,"url":null,"abstract":"<p><p>Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells <i>in vitro</i> in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA. Extensive selection and screening with MGC-10 did not yield any resistant strains, indicating it may have universal antibacterial activity against <i>S. aureus</i>. Pharmacokinetics performed in mice suggested that MGC-10 was too toxic for systemic use; however, it appears to have potential as a topical treatment for difficult-to-treat wounds or skin infections by Gram-positive pathogens such as MRSA. In a mouse skin-infection model with MRSA, MGC-10 performed as well or better than the present topical drug of choice, mupirocin. MGC-10 showed little, if any, accumulation in the livers of topically treated mice. These results bode well for the future use of MGC-10 in clinical application as it could be used to treat a broad range of <i>S. aureus</i> skin infections that are resistant to known antibiotics.IMPORTANCEThere is a critical need for new antibiotics to treat bacterial infections caused by pathogens resistant to many if not all currently available antibiotics. We describe here the identification of a prospective new antibiotic from high-throughput screening of a chemical library. The screening was designed to detect the inhibition of formation of a complex required for bacterial protein synthesis in all bacteria, the \"ternary complex,\" comprised of elongation factor Tu (EF-Tu), aminoacyl-tRNA, and GTP. The inhibitory compound, renamed MGC-10, was effective against all Gram-positive bacteria, including a wide variety of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) strains. Although apparently too toxic for systemic use, the compound was safe and effective for topical use for treating skin infections in a mouse model. No resistance to the compound has been detected thus far, suggesting the potential to develop this compound for topical use to treat infections, especially those caused by pathogens resistant to existing antibiotics.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0204624"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02046-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells in vitro in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA. Extensive selection and screening with MGC-10 did not yield any resistant strains, indicating it may have universal antibacterial activity against S. aureus. Pharmacokinetics performed in mice suggested that MGC-10 was too toxic for systemic use; however, it appears to have potential as a topical treatment for difficult-to-treat wounds or skin infections by Gram-positive pathogens such as MRSA. In a mouse skin-infection model with MRSA, MGC-10 performed as well or better than the present topical drug of choice, mupirocin. MGC-10 showed little, if any, accumulation in the livers of topically treated mice. These results bode well for the future use of MGC-10 in clinical application as it could be used to treat a broad range of S. aureus skin infections that are resistant to known antibiotics.IMPORTANCEThere is a critical need for new antibiotics to treat bacterial infections caused by pathogens resistant to many if not all currently available antibiotics. We describe here the identification of a prospective new antibiotic from high-throughput screening of a chemical library. The screening was designed to detect the inhibition of formation of a complex required for bacterial protein synthesis in all bacteria, the "ternary complex," comprised of elongation factor Tu (EF-Tu), aminoacyl-tRNA, and GTP. The inhibitory compound, renamed MGC-10, was effective against all Gram-positive bacteria, including a wide variety of methicillin-resistant Staphylococcus aureus (MRSA) strains. Although apparently too toxic for systemic use, the compound was safe and effective for topical use for treating skin infections in a mouse model. No resistance to the compound has been detected thus far, suggesting the potential to develop this compound for topical use to treat infections, especially those caused by pathogens resistant to existing antibiotics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes. Identification of an antibiotic from an HTS targeting EF-Tu:tRNA interaction: a prospective topical treatment for MRSA skin infections. Patterns of spontaneous and induced genomic alterations in Yarrowia lipolytica. Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1