{"title":"Astrocyte regulation of critical period plasticity across neural circuits","authors":"Jacob P. Brandt , Sarah D. Ackerman","doi":"10.1016/j.conb.2024.102948","DOIUrl":null,"url":null,"abstract":"<div><div>Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in <em>Drosophila</em>.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"90 ","pages":"Article 102948"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824001107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in Drosophila.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience