Astrocyte regulation of critical period plasticity across neural circuits

IF 4.8 2区 医学 Q1 NEUROSCIENCES Current Opinion in Neurobiology Pub Date : 2025-02-01 DOI:10.1016/j.conb.2024.102948
Jacob P. Brandt , Sarah D. Ackerman
{"title":"Astrocyte regulation of critical period plasticity across neural circuits","authors":"Jacob P. Brandt ,&nbsp;Sarah D. Ackerman","doi":"10.1016/j.conb.2024.102948","DOIUrl":null,"url":null,"abstract":"<div><div>Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in <em>Drosophila</em>.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"90 ","pages":"Article 102948"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824001107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Critical periods are brief windows of heightened neural circuit plasticity that allow circuits to permanently reset their structure and function to facilitate robust organismal behavior. Understanding the cellular and molecular mechanisms that instruct critical period timing is of broad clinical interest, as altered developmental plasticity is linked to multiple neurodevelopmental disorders. While intrinsic, neuronal mechanisms shape both neural circuit remodeling and critical period timing, recent data indicate that signaling from astrocytes and surrounding glia can both promote and limit critical period plasticity. In this short review, we discuss recent breakthroughs in our understanding of astrocytes in critical period plasticity and highlight pioneering work in Drosophila.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星形胶质细胞对神经回路关键期可塑性的调节。
关键时期是神经回路可塑性增强的短暂窗口期,它允许回路永久地重置其结构和功能,以促进强健的机体行为。了解指导关键时期时间的细胞和分子机制具有广泛的临床意义,因为发育可塑性的改变与多种神经发育障碍有关。虽然内在的神经元机制塑造了神经回路重塑和关键时期的时间,但最近的数据表明,星形胶质细胞和周围胶质细胞的信号传导既可以促进也可以限制关键时期的可塑性。在这篇简短的综述中,我们讨论了最近在星形胶质细胞关键期可塑性理解方面的突破,并重点介绍了在果蝇方面的开创性工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
期刊最新文献
CAMK2; four genes, one syndrome? Delineation of genotype–phenotype correlations Roles of ANK2/ankyrin-B in neurodevelopmental disorders: Isoform functions and implications for autism spectrum disorder and epilepsy The convoluted path leading to neuronal circuit formation New insights into the molecular architecture of neurons by cryo-electron tomography Turning garbage into gold: Autophagy in synaptic function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1