Pupil dilation and behavior as complementary measures of fear response in Mice.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI:10.1007/s11571-024-10180-3
Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li
{"title":"Pupil dilation and behavior as complementary measures of fear response in Mice.","authors":"Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li","doi":"10.1007/s11571-024-10180-3","DOIUrl":null,"url":null,"abstract":"<p><p>The precise assessment of emotional states in animals under the combined influence of multiple stimuli remains a challenge in neuroscience research. In this study, multi-dimensional assessments, including high-precision pupil tracking and behavioral analysis, were conducted to investigate the combined effects of fear stimuli and drug manipulation on emotional responses in mice. Mice exposed to foot shocks showed typical freezing and flight behaviors, but neither of these measures could effectively distinguish between dexmedetomidine, isoflurane, and saline groups. In contrast, the change in pupil diameter clearly distinguished the groups. Our results showed that fear stimulation could induce significant pupil dilation, and dexmedetomidine-isoflurane combined stimulation could significantly inhibit this response, but isoflurane anesthesia alone could not achieve good inhibitory effect. This further demonstrates the superiority of pupil data in resolving the effects of combined stimuli on emotional states and the potential of multidimensional assessments to refine animal disease models and drug evaluations.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4047-4054"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10180-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The precise assessment of emotional states in animals under the combined influence of multiple stimuli remains a challenge in neuroscience research. In this study, multi-dimensional assessments, including high-precision pupil tracking and behavioral analysis, were conducted to investigate the combined effects of fear stimuli and drug manipulation on emotional responses in mice. Mice exposed to foot shocks showed typical freezing and flight behaviors, but neither of these measures could effectively distinguish between dexmedetomidine, isoflurane, and saline groups. In contrast, the change in pupil diameter clearly distinguished the groups. Our results showed that fear stimulation could induce significant pupil dilation, and dexmedetomidine-isoflurane combined stimulation could significantly inhibit this response, but isoflurane anesthesia alone could not achieve good inhibitory effect. This further demonstrates the superiority of pupil data in resolving the effects of combined stimuli on emotional states and the potential of multidimensional assessments to refine animal disease models and drug evaluations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瞳孔扩张和行为作为小鼠恐惧反应的互补测量。
如何准确评估动物在多种刺激作用下的情绪状态,一直是神经科学研究的难题。本研究采用高精度瞳孔跟踪和行为分析等多维评估方法,探讨了恐惧刺激和药物操纵对小鼠情绪反应的联合影响。受到足部电击的小鼠表现出典型的冻结和逃跑行为,但这两种方法都不能有效区分右美托咪定、异氟醚和生理盐水组。相比之下,瞳孔直径的变化明显区分了各组。我们的研究结果表明,恐惧刺激可诱导瞳孔明显扩大,右美托咪胍-异氟醚联合刺激可明显抑制瞳孔扩大,而单独异氟醚麻醉不能达到良好的抑制效果。这进一步证明了瞳孔数据在解决联合刺激对情绪状态的影响方面的优势,以及多维评估在完善动物疾病模型和药物评估方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1