Stability of synchronization manifolds and its nonlinear behaviour in memristive coupled discrete neuron model.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-12-01 Epub Date: 2024-11-14 DOI:10.1007/s11571-024-10165-2
Dianavinnarasi Joseph, Suresh Kumarasamy, Sayooj Aby Jose, Karthikeyan Rajagopal
{"title":"Stability of synchronization manifolds and its nonlinear behaviour in memristive coupled discrete neuron model.","authors":"Dianavinnarasi Joseph, Suresh Kumarasamy, Sayooj Aby Jose, Karthikeyan Rajagopal","doi":"10.1007/s11571-024-10165-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate the impact of first and second-order coupling strengths on the stability of a synchronization manifold in a Discrete FitzHugh-Nagumo (DFHN) neuron model with memristor coupling. Master Stability Function (MSF) is used to estimate the stability of the synchronized manifold. The MSF of the DFHN model exhibits two zero crossings as we vary the coupling strengths, which is categorized as class <math><msub><mi>Γ</mi> <mn>2</mn></msub> </math> . Interestingly, both zero-crossing points demonstrate a power-law relationship with respect to both the first-order coupling strength and flux coefficient, as well as the second-order coupling strength and flux coefficient. In contrast, the zero crossings follow a linear relationship between first-order and second-order coupling strength. These linear and nonlinear relationships enable us to forecast the zero-crossing point and, consequently, determine the coupling strengths at which the stability of the synchronization manifold changes for any given set of parameters. We further explore the regime of the stable synchronization manifold within a defined parameter space. Lower values of both first and second-order coupling strengths have minimal impact on the transition between stable and unstable synchronization regimes. Conversely, higher coupling strengths lead to a shrinking regime of the stable synchronization manifold. This reduction follows an exponential relationship with the coupling strengths. This study is helpful in brain-inspired computing systems by understanding synchronization stability in neuron models with memristor coupling. It helps to create more efficient neural networks for tasks like pattern recognition and data processing.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4089-4099"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10165-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the impact of first and second-order coupling strengths on the stability of a synchronization manifold in a Discrete FitzHugh-Nagumo (DFHN) neuron model with memristor coupling. Master Stability Function (MSF) is used to estimate the stability of the synchronized manifold. The MSF of the DFHN model exhibits two zero crossings as we vary the coupling strengths, which is categorized as class Γ 2 . Interestingly, both zero-crossing points demonstrate a power-law relationship with respect to both the first-order coupling strength and flux coefficient, as well as the second-order coupling strength and flux coefficient. In contrast, the zero crossings follow a linear relationship between first-order and second-order coupling strength. These linear and nonlinear relationships enable us to forecast the zero-crossing point and, consequently, determine the coupling strengths at which the stability of the synchronization manifold changes for any given set of parameters. We further explore the regime of the stable synchronization manifold within a defined parameter space. Lower values of both first and second-order coupling strengths have minimal impact on the transition between stable and unstable synchronization regimes. Conversely, higher coupling strengths lead to a shrinking regime of the stable synchronization manifold. This reduction follows an exponential relationship with the coupling strengths. This study is helpful in brain-inspired computing systems by understanding synchronization stability in neuron models with memristor coupling. It helps to create more efficient neural networks for tasks like pattern recognition and data processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
忆阻耦合离散神经元模型中同步流形的稳定性及其非线性行为。
在本研究中,我们研究了一阶和二阶耦合强度对具有忆阻耦合的离散FitzHugh-Nagumo (DFHN)神经元模型中同步流形稳定性的影响。采用主稳定函数(MSF)估计同步流形的稳定性。DFHN模型的MSF在我们改变耦合强度时显示两个零交叉,这被归类为Γ 2类。有趣的是,两个过零点在一阶耦合强度和通量系数以及二阶耦合强度和通量系数方面都表现出幂律关系。相反,零交叉在一阶和二阶耦合强度之间遵循线性关系。这些线性和非线性关系使我们能够预测过零点,从而确定任何给定参数集同步流形稳定性变化的耦合强度。我们进一步探讨了稳定同步流形在一个已定义的参数空间中的状态。较低的一阶和二阶耦合强度对稳定和不稳定同步状态之间的转换影响最小。相反,较高的耦合强度导致稳定同步流形的收缩。这种减少遵循与耦合强度的指数关系。本研究有助于理解具有忆阻耦合的神经元模型的同步稳定性。它有助于为模式识别和数据处理等任务创建更高效的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1