Liang-Ling Cheng, Feng Ye, Tian Xu, Hong-Jian Li, Wei-Min Li, Xiao-Fang Fan
{"title":"Nomogram Model for Predicting Minimal Breast Cancer Based on Clinical and Ultrasonic Characteristics.","authors":"Liang-Ling Cheng, Feng Ye, Tian Xu, Hong-Jian Li, Wei-Min Li, Xiao-Fang Fan","doi":"10.2147/IJWH.S482291","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To construct a nomogram prediction model on minimal breast cancer (≦ 10 mm) based on clinical and ultrasound parameters.</p><p><strong>Methods: </strong>Clinical and ultrasound data of 433 patients with minimal breast lesions was conducted in this retrospective study. Patients were randomly divided into a training set and a validation set with a ratio of 7:3. Independent risk factors for minimal breast cancer were selected by the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis to construct a nomogram prediction model. The calibration curve, the clinical decision curve analysis (DCA) and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficacy of the model.</p><p><strong>Results: </strong>Age, margin, shape, and breast density were independent risk factors for malignant minimal breast lesions (<i>P</i> < 0.05). The AUC of the training set and validation set of the nomogram prediction model were 0.875, the sensitivity were 75.0% and 88.9%, the specificity were 83.8% and 77.7%, respectively. The mean absolute error (MAE) of the training set and validation set of the calibration curve were 0.01 and 0.024, respectively.</p><p><strong>Conclusion: </strong>The nomogram prediction model has good discrimination, calibration and clinical practical value in the training set and validation set. The minimal breast cancer prediction model based on clinical and ultrasonic features possesses high clinical value, facilitating the early diagnosis of minimal breast cancer.</p>","PeriodicalId":14356,"journal":{"name":"International Journal of Women's Health","volume":"16 ","pages":"2173-2184"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Women's Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJWH.S482291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To construct a nomogram prediction model on minimal breast cancer (≦ 10 mm) based on clinical and ultrasound parameters.
Methods: Clinical and ultrasound data of 433 patients with minimal breast lesions was conducted in this retrospective study. Patients were randomly divided into a training set and a validation set with a ratio of 7:3. Independent risk factors for minimal breast cancer were selected by the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis to construct a nomogram prediction model. The calibration curve, the clinical decision curve analysis (DCA) and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficacy of the model.
Results: Age, margin, shape, and breast density were independent risk factors for malignant minimal breast lesions (P < 0.05). The AUC of the training set and validation set of the nomogram prediction model were 0.875, the sensitivity were 75.0% and 88.9%, the specificity were 83.8% and 77.7%, respectively. The mean absolute error (MAE) of the training set and validation set of the calibration curve were 0.01 and 0.024, respectively.
Conclusion: The nomogram prediction model has good discrimination, calibration and clinical practical value in the training set and validation set. The minimal breast cancer prediction model based on clinical and ultrasonic features possesses high clinical value, facilitating the early diagnosis of minimal breast cancer.
期刊介绍:
International Journal of Women''s Health is an international, peer-reviewed, open access, online journal. Publishing original research, reports, editorials, reviews and commentaries on all aspects of women''s healthcare including gynecology, obstetrics, and breast cancer. Subject areas include: Chronic conditions including cancers of various organs specific and not specific to women Migraine, headaches, arthritis, osteoporosis Endocrine and autoimmune syndromes - asthma, multiple sclerosis, lupus, diabetes Sexual and reproductive health including fertility patterns and emerging technologies to address infertility Infectious disease with chronic sequelae including HIV/AIDS, HPV, PID, and other STDs Psychological and psychosocial conditions - depression across the life span, substance abuse, domestic violence Health maintenance among aging females - factors affecting the quality of life including physical, social and mental issues Avenues for health promotion and disease prevention across the life span Male vs female incidence comparisons for conditions that affect both genders.