Min-Gyu Song, Kyung-Ho Ko, Yoon-Hyuk Huh, Chan-Jin Park, Lee-Ra Cho
{"title":"Edge Chipping Resistance and Flexural Strength of CAD-CAM Ceramics Before and After Thermomechanical Aging.","authors":"Min-Gyu Song, Kyung-Ho Ko, Yoon-Hyuk Huh, Chan-Jin Park, Lee-Ra Cho","doi":"10.1111/jerd.13391","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the complementary mechanical properties of dental ceramics using edge chipping resistance (Rea) and flexural strength before and after thermomechanical aging.</p><p><strong>Material and methods: </strong>Computer-aided design and computer-aided manufacturing of ceramic materials, including zirconia (ZR), lithium disilicate (LS2), and resin nanoceramics (RNC), were evaluated. Specimens for flexural strength testing were fabricated with dimensions of 3 × 4 × 25 mm, with 30 specimens per group. For the edge chipping test (ECT), specimens were fabricated with dimensions of 3 × 4 × 12 mm, with 48 specimens per group. Half of the specimens for both tests were subjected to thermomechanical aging for 200,000 cycles at 50 N. A Weibull analysis was performed to determine flexural strength. Fractographic analysis was performed before and after thermomechanical aging during the ECT. X-ray diffractometry (XRD) was performed on the ZR specimens before and after thermomechanical aging. Flexural strength was analyzed using a two-way repeated analysis of variance (ANOVA) with a t-test, and Rea was analyzed using Pearson correlation and a two-way repeated ANOVA.</p><p><strong>Results: </strong>The flexural strength and Rea differed according to the material (p = 0.001), whereas they were similar before and after thermomechanical aging (p > 0.05). The Weibull modulus of the flexural strength decreased after thermomechanical aging. In the fractographic analysis of the ECT, more than two fracture origins were identified after thermomechanical aging. The XRD analysis of ZR showed an increased monoclinic phase after thermomechanical aging.</p><p><strong>Conclusion: </strong>All the materials met the ISO 6872 standards for bending test. However, LS2 and RNC show low edge chipping resistance within the range of the occlusal force. The thermomechanical aging did not significantly alter the mechanical properties of the materials. However, the Weibull coefficients of the flexural strength decreased, and an additional origin of fracture appeared after thermomechanical aging.</p><p><strong>Significance: </strong>Flexural strength and Rea differed depending on the material used. The probability of the material fracture increased after thermomechanical aging. To understand ceramic fractures, two mechanical tests and thermomechanical aging must be performed together.</p>","PeriodicalId":15988,"journal":{"name":"Journal of Esthetic and Restorative Dentistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Esthetic and Restorative Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jerd.13391","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate the complementary mechanical properties of dental ceramics using edge chipping resistance (Rea) and flexural strength before and after thermomechanical aging.
Material and methods: Computer-aided design and computer-aided manufacturing of ceramic materials, including zirconia (ZR), lithium disilicate (LS2), and resin nanoceramics (RNC), were evaluated. Specimens for flexural strength testing were fabricated with dimensions of 3 × 4 × 25 mm, with 30 specimens per group. For the edge chipping test (ECT), specimens were fabricated with dimensions of 3 × 4 × 12 mm, with 48 specimens per group. Half of the specimens for both tests were subjected to thermomechanical aging for 200,000 cycles at 50 N. A Weibull analysis was performed to determine flexural strength. Fractographic analysis was performed before and after thermomechanical aging during the ECT. X-ray diffractometry (XRD) was performed on the ZR specimens before and after thermomechanical aging. Flexural strength was analyzed using a two-way repeated analysis of variance (ANOVA) with a t-test, and Rea was analyzed using Pearson correlation and a two-way repeated ANOVA.
Results: The flexural strength and Rea differed according to the material (p = 0.001), whereas they were similar before and after thermomechanical aging (p > 0.05). The Weibull modulus of the flexural strength decreased after thermomechanical aging. In the fractographic analysis of the ECT, more than two fracture origins were identified after thermomechanical aging. The XRD analysis of ZR showed an increased monoclinic phase after thermomechanical aging.
Conclusion: All the materials met the ISO 6872 standards for bending test. However, LS2 and RNC show low edge chipping resistance within the range of the occlusal force. The thermomechanical aging did not significantly alter the mechanical properties of the materials. However, the Weibull coefficients of the flexural strength decreased, and an additional origin of fracture appeared after thermomechanical aging.
Significance: Flexural strength and Rea differed depending on the material used. The probability of the material fracture increased after thermomechanical aging. To understand ceramic fractures, two mechanical tests and thermomechanical aging must be performed together.
期刊介绍:
The Journal of Esthetic and Restorative Dentistry (JERD) is the longest standing peer-reviewed journal devoted solely to advancing the knowledge and practice of esthetic dentistry. Its goal is to provide the very latest evidence-based information in the realm of contemporary interdisciplinary esthetic dentistry through high quality clinical papers, sound research reports and educational features.
The range of topics covered in the journal includes:
- Interdisciplinary esthetic concepts
- Implants
- Conservative adhesive restorations
- Tooth Whitening
- Prosthodontic materials and techniques
- Dental materials
- Orthodontic, periodontal and endodontic esthetics
- Esthetics related research
- Innovations in esthetics