Pressure estimation of ultra-high frequency ultrasound using gas vesicles.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034438
Eric M Strohm, Di Wu, Dina Malounda, Rohit Nayak, Mikhail G Shapiro, Michael C Kolios
{"title":"Pressure estimation of ultra-high frequency ultrasound using gas vesicles.","authors":"Eric M Strohm, Di Wu, Dina Malounda, Rohit Nayak, Mikhail G Shapiro, Michael C Kolios","doi":"10.1121/10.0034438","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic microscopy uses ultra-high frequency (UHF) ultrasound transducers over 80 MHz to perform high-resolution imaging. The pressure output of these transducers is unknown, as commercial calibrated hydrophones can measure pressure for transducers with frequencies only up to 80 MHz. This study used gas vesicle nanostructures (GVs) that collapse at 571 kPa to estimate the pressure of UHF transducers at 40, 80, 200, and 375 MHz. Agarose phantoms containing GVs were made, and a baseline ultrasound image was performed at low pressure to prevent GV collapse. Sections within the phantom were scanned at varying voltage to determine the GV collapse threshold. The pressure at full driving voltage was then calculated, assuming a linear relation between transducer voltage and pressure. The pressure calculated for the 40 MHz transducer was 2.2 ± 0.1 MPa at 21 °C. Using a hydrophone, the measured pressure was 2.1 ± 0.3 MPa, a difference of <2%, validating the method at this frequency. The pressure calculated for the other transducers was 2.0 ± 0.1 MPa (80 MHz), 1.2 ± 0.1 (200 MHz), and 1.05 ± 0.17 (375 MHz at 37 °C). This study addresses the challenge of estimating pressure output from UHF ultrasound transducers, demonstrating that the pressure output in the 40-400 MHz frequency range can be quantified.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4193-4201"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034438","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic microscopy uses ultra-high frequency (UHF) ultrasound transducers over 80 MHz to perform high-resolution imaging. The pressure output of these transducers is unknown, as commercial calibrated hydrophones can measure pressure for transducers with frequencies only up to 80 MHz. This study used gas vesicle nanostructures (GVs) that collapse at 571 kPa to estimate the pressure of UHF transducers at 40, 80, 200, and 375 MHz. Agarose phantoms containing GVs were made, and a baseline ultrasound image was performed at low pressure to prevent GV collapse. Sections within the phantom were scanned at varying voltage to determine the GV collapse threshold. The pressure at full driving voltage was then calculated, assuming a linear relation between transducer voltage and pressure. The pressure calculated for the 40 MHz transducer was 2.2 ± 0.1 MPa at 21 °C. Using a hydrophone, the measured pressure was 2.1 ± 0.3 MPa, a difference of <2%, validating the method at this frequency. The pressure calculated for the other transducers was 2.0 ± 0.1 MPa (80 MHz), 1.2 ± 0.1 (200 MHz), and 1.05 ± 0.17 (375 MHz at 37 °C). This study addresses the challenge of estimating pressure output from UHF ultrasound transducers, demonstrating that the pressure output in the 40-400 MHz frequency range can be quantified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用气体囊泡估算超高频超声压力。
声学显微镜使用超过80兆赫的超高频(UHF)超声换能器来执行高分辨率成像。这些传感器的压力输出是未知的,因为商业校准水听器可以测量频率仅为80 MHz的传感器的压力。本研究使用在571 kPa下坍塌的气体囊泡纳米结构(GVs)来估计UHF换能器在40、80、200和375 MHz下的压力。制作含有GV的琼脂糖模型,并在低压下进行基线超声成像以防止GV塌陷。在不同电压下扫描幻体内的部分,以确定GV崩溃阈值。假设换能器电压与压力呈线性关系,计算全驱动电压下的压力。在21°C时,40 MHz传感器的计算压力为2.2±0.1 MPa。使用水听器,测得的压力为2.1±0.3 MPa,差值为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
A hybrid design based on alternating layered fluids for the cloaking of elastic cylinders. A stochastic and microscopic model to predict road traffic noise by random generation of single vehicles' speeds. Efficient and accurate feature-aided active tracking for underwater small targets in highly cluttered harbor environments using a full motion acoustic flow field solution. Enhancing feature-aided data association tracking in passive sonar arrays: An advanced Siamese network approach. Exploring the directivities of whistle in the Indo-Pacific humpback dolphin (Sousa chinensis) and their dependency on the whistles' frequency contour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1