Sleep deprivation activated AMPK/FOXO3a signaling mediates pineal autophagy impairment to reduce melatonin secretion in CUMS + SD rats leading to depression combined with insomnia.
Zirong Li, Yi Shu, Qian Liu, Deguo Liu, Sheng Xie, Mingjun Wei, Lidan Lan, Xinyi Yang
{"title":"Sleep deprivation activated AMPK/FOXO3a signaling mediates pineal autophagy impairment to reduce melatonin secretion in CUMS + SD rats leading to depression combined with insomnia.","authors":"Zirong Li, Yi Shu, Qian Liu, Deguo Liu, Sheng Xie, Mingjun Wei, Lidan Lan, Xinyi Yang","doi":"10.1016/j.neulet.2024.138091","DOIUrl":null,"url":null,"abstract":"<p><p>This study established an animal model of comorbid depression and insomnia by combining chronic unpredictable mild stress (CUMS) with sleep deprivation (SD). The pathogenesis of comorbid depression and insomnia may be associated with impaired AMPK/FOXO3a signaling, which mediates autophagy inhibition, leading to decreased pineal melatonin secretion. The findings revealed that CUMS + SD rats exhibited more pronounced depression-like behaviors, sleep disorders, increased central oxidative stress, and exacerbated neuroinflammation, accompanied by reduced levels of 5-hydroxytryptophan (5-HT) and melatonin in the pineal gland. Notably, further investigations revealed that impaired mitochondrial autophagy in the pineal gland is closely linked to the significant suppression of AMPK/FOXO3a signaling. The combined intervention of venlafaxine and melatonin effectively ameliorated the impaired mitochondrial autophagy in the pineal gland of CUMS + SD rats and stimulated melatonin secretion. Consequently, the study proposes that dysfunctional mitochondrial autophagy regulated by the AMPK/FOXO3a pathway can influence melatonin secretion, thereby playing a pivotal role in the pathogenesis of depression combined with insomnia.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138091"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study established an animal model of comorbid depression and insomnia by combining chronic unpredictable mild stress (CUMS) with sleep deprivation (SD). The pathogenesis of comorbid depression and insomnia may be associated with impaired AMPK/FOXO3a signaling, which mediates autophagy inhibition, leading to decreased pineal melatonin secretion. The findings revealed that CUMS + SD rats exhibited more pronounced depression-like behaviors, sleep disorders, increased central oxidative stress, and exacerbated neuroinflammation, accompanied by reduced levels of 5-hydroxytryptophan (5-HT) and melatonin in the pineal gland. Notably, further investigations revealed that impaired mitochondrial autophagy in the pineal gland is closely linked to the significant suppression of AMPK/FOXO3a signaling. The combined intervention of venlafaxine and melatonin effectively ameliorated the impaired mitochondrial autophagy in the pineal gland of CUMS + SD rats and stimulated melatonin secretion. Consequently, the study proposes that dysfunctional mitochondrial autophagy regulated by the AMPK/FOXO3a pathway can influence melatonin secretion, thereby playing a pivotal role in the pathogenesis of depression combined with insomnia.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.