An efficient injection protocol for Drosophila larvae.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Biology Methods and Protocols Pub Date : 2024-12-06 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae093
Sattar Soltani, Nhan Huynh, Kirst King-Jones
{"title":"An efficient injection protocol for <i>Drosophila</i> larvae.","authors":"Sattar Soltani, Nhan Huynh, Kirst King-Jones","doi":"10.1093/biomethods/bpae093","DOIUrl":null,"url":null,"abstract":"<p><p>Intravenous injection provides a direct, rapid, and efficient route for delivering drugs or other substances, particularly for compounds with poor intestinal absorption or molecules (e.g. proteins) that are prone to structural changes and degradation within the digestive system. While <i>Drosophila</i> larvae represent a well-established genetic model for studying developmental and physiological pathways, as well as human diseases, their use in analyzing the molecular effects of substance exposure remains limited. In this study, we present a highly efficient injection method for <i>Drosophila</i> first- and second-instar larvae. Despite causing a slight developmental delay, this method achieves a high survival rate and offers a quick, easily adjustable protocol. The process requires 3-5 h to inject 150-300 larvae, depending on the microcapillary needle, microinjection system, and the compound being administered. As proof of concept, we compared the effects of injecting ferritin protein into <i>Fer1HCH<sup>00451</sup></i> mutant first instar larvae with those of dietary ferritin administration. Our results show that ferritin injection rescues <i>Fer1HCH</i> mutants, a result that cannot be achieved through dietary delivery. This approach is particularly valuable for the delivery of complex compounds in cases where oral administration is impaired or limited by the digestive system.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae093"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Intravenous injection provides a direct, rapid, and efficient route for delivering drugs or other substances, particularly for compounds with poor intestinal absorption or molecules (e.g. proteins) that are prone to structural changes and degradation within the digestive system. While Drosophila larvae represent a well-established genetic model for studying developmental and physiological pathways, as well as human diseases, their use in analyzing the molecular effects of substance exposure remains limited. In this study, we present a highly efficient injection method for Drosophila first- and second-instar larvae. Despite causing a slight developmental delay, this method achieves a high survival rate and offers a quick, easily adjustable protocol. The process requires 3-5 h to inject 150-300 larvae, depending on the microcapillary needle, microinjection system, and the compound being administered. As proof of concept, we compared the effects of injecting ferritin protein into Fer1HCH00451 mutant first instar larvae with those of dietary ferritin administration. Our results show that ferritin injection rescues Fer1HCH mutants, a result that cannot be achieved through dietary delivery. This approach is particularly valuable for the delivery of complex compounds in cases where oral administration is impaired or limited by the digestive system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
期刊最新文献
Robust RNA secondary structure prediction with a mixture of deep learning and physics-based experts. Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. A cognitive and sensory approach based on workshops using the zebrafish model promotes the discovery of life sciences in the classroom. An efficient injection protocol for Drosophila larvae. Protocol for obtaining doubled haploids in isolated microspore culture in vitro for poorly responsive genotypes of brassicaceae family.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1