Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion.

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-12-21 DOI:10.1016/j.gde.2024.102298
Aaron Corin, Elphège P Nora, Vijay Ramani
{"title":"Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion.","authors":"Aaron Corin, Elphège P Nora, Vijay Ramani","doi":"10.1016/j.gde.2024.102298","DOIUrl":null,"url":null,"abstract":"<p><p>CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers. In addition to influencing transcription, DNA replication, and DNA repair in ways that are separable from its role in loop extrusion, CTCF also interacts with RNA and contributes to RNA splicing and condensation of transcriptional activators. Here, we review recent insight into cohesin-independent activities of CTCF, highlighting its multifaceted roles in chromatin biology and transcriptional regulation.</p>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"90 ","pages":"102298"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gde.2024.102298","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers. In addition to influencing transcription, DNA replication, and DNA repair in ways that are separable from its role in loop extrusion, CTCF also interacts with RNA and contributes to RNA splicing and condensation of transcriptional activators. Here, we review recent insight into cohesin-independent activities of CTCF, highlighting its multifaceted roles in chromatin biology and transcriptional regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion. Rethinking chromatin accessibility: from compaction to dynamic interactions. Tile by tile: capturing the evolutionary mosaic of human conditions. Early central nervous system development and neuron regeneration. Nuclear remodeling during cell fate transitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1