Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-12-05 DOI:10.1039/D4TB02062F
Dan Song, Jieyu Zhang, Xuefeng Hu and Xiaoyan Liu
{"title":"Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines","authors":"Dan Song, Jieyu Zhang, Xuefeng Hu and Xiaoyan Liu","doi":"10.1039/D4TB02062F","DOIUrl":null,"url":null,"abstract":"<p >Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood–brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1548-1572"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02062f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood–brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米中药治疗阿尔茨海默病的研究进展。
传统中医(TCM)在治疗和管理阿尔茨海默病(AD)方面已经使用了几个世纪。然而,将它们有效地传递到目标站点可能是一个主要挑战。这是由于它们的水溶性差、生物利用度低和潜在毒性。此外,血脑屏障(BBB)是中药有效递送的主要障碍,显著降低了疗效。纳米技术的进步及其在中医中的应用(纳米中医)可以将有效成分或中药成分通过血脑屏障输送到目标脑区。本文综述了近年来中药治疗AD的有效成分,包括萜类、多酚类、生物碱类、黄酮类和醌类等的纳米载体递送系统的研究进展。强调了这些先进中药纳米载体未来发展面临的主要挑战和机遇。总之,本综述为利用纳米载体塑造未来中药给药提供了有价值的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Correction: In vivo transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury Back cover Correction: Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1