Greater lesion damage is bidirectionally related with accelerated brain aging after stroke.

Mahir H Khan, Octavio Marin-Pardo, Stuti Chakraborty, Michael R Borich, Mayerly Castillo, James H Cole, Steven C Cramer, Miranda R Donnelly, Emily E Fokas, Niko H Fullmer, Jeanette R Gumarang, Leticia Hayes, Hosung Kim, Amisha Kumar, Emily A Marks, Emily R Rosario, Heidi M Schambra, Nicolas Schweighofer, Grace C Song, Myriam Taga, Bethany P Tavener, Carolee J Winstein, Sook-Lei Liew
{"title":"Greater lesion damage is bidirectionally related with accelerated brain aging after stroke.","authors":"Mahir H Khan, Octavio Marin-Pardo, Stuti Chakraborty, Michael R Borich, Mayerly Castillo, James H Cole, Steven C Cramer, Miranda R Donnelly, Emily E Fokas, Niko H Fullmer, Jeanette R Gumarang, Leticia Hayes, Hosung Kim, Amisha Kumar, Emily A Marks, Emily R Rosario, Heidi M Schambra, Nicolas Schweighofer, Grace C Song, Myriam Taga, Bethany P Tavener, Carolee J Winstein, Sook-Lei Liew","doi":"10.1101/2024.12.13.24319014","DOIUrl":null,"url":null,"abstract":"<p><p>Regional neuron loss following stroke can result in remote brain changes due to diaschisis and secondary brain atrophy. Whole brain changes post-stroke can be captured by the predicted brain age difference (brain-PAD), a neuroimaging-derived biomarker of global brain health previously associated with poorer chronic stroke outcomes. We hypothesized that greater lesion damage would be longitudinally associated with worsening brain-PAD during subacute stroke, and conversely, that poorer baseline brain-PAD would be associated with enlarged lesion damage. We prospectively collected MRIs from 47 stroke patients across three sites within 3 weeks (baseline) and at 3 months (follow-up) post-stroke. Predicted brain age was estimated via a pretrained ridge regression model using 77 morphological features. Brain-PAD was calculated as predicted age minus chronological age. Robust linear mixed effects regression models were used to examine relationships between infarct volume and brain-PAD, adjusting for age, sex, time, and intracranial volume at baseline. Larger baseline infarct volume was associated with accelerated brain aging at 3 months (β=0.87, p=0.023). Conversely, larger baseline brain-PAD predicted larger increase in infarct volume at 3 months (β=0.02, p=0.009). These findings reveal a bidirectional relationship between focal stroke damage and global brain health during the subacute period, underscoring the importance of assessing both.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.13.24319014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regional neuron loss following stroke can result in remote brain changes due to diaschisis and secondary brain atrophy. Whole brain changes post-stroke can be captured by the predicted brain age difference (brain-PAD), a neuroimaging-derived biomarker of global brain health previously associated with poorer chronic stroke outcomes. We hypothesized that greater lesion damage would be longitudinally associated with worsening brain-PAD during subacute stroke, and conversely, that poorer baseline brain-PAD would be associated with enlarged lesion damage. We prospectively collected MRIs from 47 stroke patients across three sites within 3 weeks (baseline) and at 3 months (follow-up) post-stroke. Predicted brain age was estimated via a pretrained ridge regression model using 77 morphological features. Brain-PAD was calculated as predicted age minus chronological age. Robust linear mixed effects regression models were used to examine relationships between infarct volume and brain-PAD, adjusting for age, sex, time, and intracranial volume at baseline. Larger baseline infarct volume was associated with accelerated brain aging at 3 months (β=0.87, p=0.023). Conversely, larger baseline brain-PAD predicted larger increase in infarct volume at 3 months (β=0.02, p=0.009). These findings reveal a bidirectional relationship between focal stroke damage and global brain health during the subacute period, underscoring the importance of assessing both.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct Prosthesis Force Control with Tactile Feedback May Connect with the Internal Model. Effects of commonly used antibiotics on children's developing gut microbiomes and resistomes in peri-urban Lima, Peru. Greater lesion damage is bidirectionally related with accelerated brain aging after stroke. Pallidal and motor cortical interactions determine gait initiation dynamics in Parkinson's disease. Prioritizing Parkinson's disease risk genes in genome-wide association loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1