Alejandro Paniagua, Cristina Agustin-García, Francisco J Pardo-Palacios, Thomas Brown, Maite De Maria, Nancy D Denslow, Camila Mazzoni, Ana Conesa
{"title":"Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq","authors":"Alejandro Paniagua, Cristina Agustin-García, Francisco J Pardo-Palacios, Thomas Brown, Maite De Maria, Nancy D Denslow, Camila Mazzoni, Ana Conesa","doi":"10.1101/gr.279864.124","DOIUrl":null,"url":null,"abstract":"While the production of a draft genome has become more accessible due to long-read sequencing, the annotation of these new genomes has not been developed at the same pace. Long-read RNA sequencing (lrRNA-seq) offers a promising solution for enhancing gene annotation. In this study, we explore how sequencing platforms, Oxford Nanopore R9.4.1 chemistry or PacBio Sequel II CCS, and data processing methods influence evidence-driven genome annotation using long reads. Incorporating PacBio transcripts into our annotation pipeline significantly outperformed traditional methods, such as ab initio predictions and short-read-based annotations. We applied this strategy to a nonmodel species, the Florida manatee, and compared our results to existing short-read-based annotation. At the loci level, both annotations were highly concordant, with 90% agreement. However, at the transcript level, the agreement was only 35%. We identified 4,906 novel loci, represented by 5,707 isoforms, with 64% of these isoforms matching known sequences in other mammalian species. Overall, our findings underscore the importance of using high-quality curated transcript models in combination with ab initio methods for effective genome annotation.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"32 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279864.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While the production of a draft genome has become more accessible due to long-read sequencing, the annotation of these new genomes has not been developed at the same pace. Long-read RNA sequencing (lrRNA-seq) offers a promising solution for enhancing gene annotation. In this study, we explore how sequencing platforms, Oxford Nanopore R9.4.1 chemistry or PacBio Sequel II CCS, and data processing methods influence evidence-driven genome annotation using long reads. Incorporating PacBio transcripts into our annotation pipeline significantly outperformed traditional methods, such as ab initio predictions and short-read-based annotations. We applied this strategy to a nonmodel species, the Florida manatee, and compared our results to existing short-read-based annotation. At the loci level, both annotations were highly concordant, with 90% agreement. However, at the transcript level, the agreement was only 35%. We identified 4,906 novel loci, represented by 5,707 isoforms, with 64% of these isoforms matching known sequences in other mammalian species. Overall, our findings underscore the importance of using high-quality curated transcript models in combination with ab initio methods for effective genome annotation.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.