Sayuri L. Higashi, Yanjun Zheng, Taniya Chakraborty, Azadeh Alavizargar, Andreas Heuer, Seraphine V. Wegner
{"title":"Adaptive metal ion transport and metalloregulation-driven differentiation in pluripotent synthetic cells","authors":"Sayuri L. Higashi, Yanjun Zheng, Taniya Chakraborty, Azadeh Alavizargar, Andreas Heuer, Seraphine V. Wegner","doi":"10.1038/s41557-024-01682-y","DOIUrl":null,"url":null,"abstract":"<p>Pluripotent cells can yield different cell types determined by the specific sequence of differentiation signals that they encounter as the cell activates or deactivates functions and retains memory of previous inputs. Here, we achieved pluripotency in synthetic cells by incorporating three dormant apo-metalloenzymes such that they could differentiate towards distinct fates, depending on the sequence of specific metal ion transport with ionophores. In the first differentiation step, we selectively transported one of three extracellular metal ion cofactors into pluripotent giant unilamellar vesicles (GUVs), which resulted in elevation of intracellular pH, hydrogen peroxide production or GUV lysis. Previously added ionophores suppress transport with subsequent ionophores owing to interactions among them in the membrane, as corroborated by atomistic simulations. Consequently, the addition of a second ionophore elicits a dampened response in the multipotent GUV and a third ionophore results in no further response, reminiscent of a terminally differentiated GUV. The pluripotent GUV can differentiate into five final fates, depending on the sequence in which the three ionophores are added.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"1 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01682-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pluripotent cells can yield different cell types determined by the specific sequence of differentiation signals that they encounter as the cell activates or deactivates functions and retains memory of previous inputs. Here, we achieved pluripotency in synthetic cells by incorporating three dormant apo-metalloenzymes such that they could differentiate towards distinct fates, depending on the sequence of specific metal ion transport with ionophores. In the first differentiation step, we selectively transported one of three extracellular metal ion cofactors into pluripotent giant unilamellar vesicles (GUVs), which resulted in elevation of intracellular pH, hydrogen peroxide production or GUV lysis. Previously added ionophores suppress transport with subsequent ionophores owing to interactions among them in the membrane, as corroborated by atomistic simulations. Consequently, the addition of a second ionophore elicits a dampened response in the multipotent GUV and a third ionophore results in no further response, reminiscent of a terminally differentiated GUV. The pluripotent GUV can differentiate into five final fates, depending on the sequence in which the three ionophores are added.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.