Probing the Influence of Imidazolylidene- and Triazolylidene-Based Carbenes on the Catalytic Potential of Dioxomolybdenum and Dioxotungsten Complexes in Dexoxygenation Catalysis

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-12-24 DOI:10.1039/d4qi02392g
Florian Rochus Neururer, Florian Heim, Marc Baltrun, Philipp Boos, Julia Beerhues, Michael Seidl, Stephan Hohloch
{"title":"Probing the Influence of Imidazolylidene- and Triazolylidene-Based Carbenes on the Catalytic Potential of Dioxomolybdenum and Dioxotungsten Complexes in Dexoxygenation Catalysis","authors":"Florian Rochus Neururer, Florian Heim, Marc Baltrun, Philipp Boos, Julia Beerhues, Michael Seidl, Stephan Hohloch","doi":"10.1039/d4qi02392g","DOIUrl":null,"url":null,"abstract":"We report the synthesis of dianionic OCO supported NHC and MIC complexes of heavy group VI metals with the general formula (OCO)MO2 (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal center in this transformation. This reveals that molybdenum based triazolylidene complex 2-Mo is by far the most active catalyst and TOFs of up to 263 h-1 are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest, that the superiority of the triazolylidene-based complex 2-Mo is a result of a more stable metal carbene bond compared to the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex 5-Mo, that can be thermally converted to a µ-oxodimolybdneum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation reaction of the nitroarenes to the corresponding anilines with nitrosoarenes as the only intermediates. In summary, this work showcases the major influence of the NHC/MIC donor on the catalytic properties of early transition metal complexes.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"6 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02392g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis of dianionic OCO supported NHC and MIC complexes of heavy group VI metals with the general formula (OCO)MO2 (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal center in this transformation. This reveals that molybdenum based triazolylidene complex 2-Mo is by far the most active catalyst and TOFs of up to 263 h-1 are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest, that the superiority of the triazolylidene-based complex 2-Mo is a result of a more stable metal carbene bond compared to the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex 5-Mo, that can be thermally converted to a µ-oxodimolybdneum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation reaction of the nitroarenes to the corresponding anilines with nitrosoarenes as the only intermediates. In summary, this work showcases the major influence of the NHC/MIC donor on the catalytic properties of early transition metal complexes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Precise control of photoemission and circularly polarized emission achieved through resonant coupling of chiral nanoparticles with Ag particles Near-infrared luminescence AgPd alloy superatomic clusters Probing the Influence of Imidazolylidene- and Triazolylidene-Based Carbenes on the Catalytic Potential of Dioxomolybdenum and Dioxotungsten Complexes in Dexoxygenation Catalysis Fluoride Binding in Unlikely Partners: The Formation of Anion-Anion Complexes with [M(EGTA)]⁻ and [M(OBETA)]⁻ (M = Gd3+, Y3+) Cluster-like Mo2N anchoring on reduced graphene oxide as the efficient and deep-degree oxidative desulfurization catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1